
The Use of Hierarchy

and Instance in a Data Structure

for Computer Music

William Buxton, William Reeves, Ronald Baecker, and Leslie Mezei

The Structured Sound Synthesis Project
Computer Systems Research Group

University of Toronto
Toronto, Ontario

Canada
M5S lA4

1. General

1.1 Introduction

One of the most important aspects in the designof any
computer system is determining the basic data types and struc-
tures to be used. In making such decisions the main consider-
ation is the manner in which the data must function in their
intended application. In defining the data structures for the
music system of the Structured Sound Synthesis Project, we
have been guided by our projection of the interaction between
the tool which we are developing,and the composer. In this
regard, we view the composer's action as consisting of four
basic tasks:

1. Definition of the palette of timbres to be available.
This we call object definition, which is analogous to
choosing the instruments which are to comprise the
composer's orchestra. The main expansion on the
analogy is that the composer also has the option to
"invent" his own instruments.

2. Definition of the pitch-time structure of a composi-
tion, a process which we can call score definition. In
conventional music, this task would be roughly
analogous to composinga piano version of a score.

3. The orchestration of the "score". Generally stated,
attaching attributes (such as objects defined in
Step I) to scores defined in Step 2.

Page10

4. The perfomlance of the material developed thus far,
whether an entire (orchestrated or unorchestrated)
score, or simply a singlenote (to audition a particu-
lar object, for example)1.

From the above taxonomy of tasks derives one of our
first major decisions: to have two major data types, objects
and scores, which relate to the sonic level and deeper struc-
tural level,respectively.Secondly- takinginto consideration
that composers work in different ways-an important consid-
eration was to structure the system such that there be no order
imposed on the sequence in which the user undertakes the
above four tasks. Therefore, a composer is allowed to perform
a score before it has been orchestrated, for example. The im-
plication is that the system should be capable of coping with
incompletely specified data. The obvious solution is to ensure
that the low level structures can support an elegant system of
defaults. Finally, it was seen as important to design the data
structures so as to facilitate the definition of the scope of
operators which the composer would be invoking to affect the
data base. The composer must be provided with a "handle"
onto his data which goesbeyond the note-by-note approach
prevalent in most systems today.

In the remainder of this paper, we shall present the de-
sign of a data structure which was developed in light of these
considerations. Weshall begin by givinga general background
and motivation for the two main data types (scores & objects)
and then proceed to present the details of the actual
implementation.

Computer Music Journal, Box E, Menlo Park, CA 94025 Volume II Number 4

1.2 Scores

1.2.1 The HierarchicalRepresentation of Scores

In examining the literature it can be seen that most sys-
tems to date have gravitated towards one of two extremes:
those which dealt with the score from a note-by-note ap-
proach (e.g., Vercoe, 1975), and those which dealt with the
score as a single entity (e.g., Xenakis, 1971). It is obvious,
however, that structures falling somewhere between the
"note" and "score" level play an important musical role.
Therefore, systems which lean towards the "note" and/or
"score" level are seen as largely inadequate in dealing with
these middle level structures. Truax (1973) recognized this and
his POD system was an attempt to deal with the problem. His
approach, however, was based on the use of stochastic pro-
cesses, and therefore assumesother problems of compositional
programs. The problem of dealing with the different structural
levels of a composition-from note to score-remain largely
unresolved.

Two observations concerning the above provide the basis
of our approach to the problem. First, what have hitherto
been considered two extremes are seen as two instances of the
same thing. Both deal with the composition "chunk-by-
chunk". The only real difference is the size of the chunk: a
note or an entire score. If we could provide a structure
through which the composer could cause an operator (e.g.,
"play", "transpose", etc.) to affect any "chunk" of the
composition-from note to score-we will have gone a long
way in overcoming the problems of previous systems.

The key to allowing this "chunk-by-chunk" addressing
lies in our second observation: that the discussion of structural
"levels" immediately suggestsa hierarchical internal represen-
tation for scores. Such a structuring of the data goes a long
way towards enabling the specification of scope (definition of
"chunks") of operators. A "play" command, for example, can
affect a terminal node (single note) or some non-terminal
node (thus causing the sub-tree or "sub-score" below that
node to be played). The important point to note is that such
a structuring of the data allowsany "chunk" of a score to be
treated in exactly the same manner asa singlenote; with the
same ease and clarity, regardlessof "chunk" size!

1.2.2. The MusicalEvent

Given the temporal nature of music, it is "natural" that
we define a score as "an ordered sequence of musical events".
What we mean by a "musical event", however, is central to an
understanding of our hierarchic representation of scores.

By "musical event" we mean simply an event which
occurs during the course of a composition which has a start-
time and an end. Thus, the entire composition constitutes a
musical event (the highest level), as does a single note (the
lowest level). Similarly, chords, motives, movements, etc., are
all musical events. In fact, any of the "chunks" -as described
in the previous section-can constitute a musical event2. Thus,
any musical event (e.g., a motif) can be made up of composite
musical events (e.g., chords and notes); hence the basis for our
hierarchy.

In considering the concept of a musical event, it is
important to realize that the starting time of the next event is
completely independent of the duration of the current one.

Therefore, as we see in Figure 1, for example, the same two
events (G4 and C5) can occur in sequence (Bar one) or parallel
(Bar two), or in some combination of the two (Bar three).

~ l1i ::~

Figure 1. Temporal relationships between
events.
Bar 1: sequence (melodic)
Bar 2: parallel (chord)
Bar 3: mixed

simple musical

Similarly, we see in Figure 2, for example, that each of the
four parts in a string quartet can be considered as a separate
musical event (each made up of events of a lower level).

ViolinoI
AlIegro,.I.no

t .-,

Violino II
,-----

Viola

Violoncello

f~

Figure 2. High level musical events-an example. Each line
of the quartet can be considered a single musical event. The
events overlap in a relationship similar to Bars 2 & 3 in
Figure 1.
(From Bartok, String Quartet No.4, First Movement)

With the musical events, there are two autonomous
notions of time: duration and entry-delay. The first is self-
explanatory, and the second is the delay before the onset of
the ~ext event in the sequence. In melodic figures the two are
equal. In a chord, the entry delay is equal to zero. The impor-
tant thing to note is that in performance, for example, they
can be modified independently or together. Changingboth will
vary tempo while adjusting the articulation proportionally.
Adjusting duration ,independently of entry -delay will result in
a change in the articulation of notes, for example. Thus, there
is a great deal of potential for the "conducting" of a score
built into the underlying structure.

Wecan express the notion of musical event as a simple
grammar (where Mevent is an abbreviation for musical
event):3

Composition ::= Mevent;
Mevent ::= Mevent* I Score I note;
Score ::= Mevent;
note ::= terminal (i.e., some musical note);

(The grammar is expressed in BNF, where ": :=" means "is
derIDedas" i "I" means "or", "*,, means "may be repeated".)

Buxton, Reeves, Baecker, and Mezei: The Use of Hierarchy and Instance in a Data Structure Page 11

Besidesthe ability to isolate different components of the
composition, this structure has the benefit that the tree
structure actually represents a "recipe" of how the composi-
tion was put together. Thus the additional features of being
able to backtrack or reassemblescores are provided. Through-
out it should be kept in mind that the common simple list
structure used to represent scores is covered by the model:
a tree of level one. Therefore, the user has a choice as to his/
her score representation. Complexity is not forced upon the
composer.

1.2.3. Instantiation

Our choice of a hierarchic score representation makes
possible additional features not yet discussed. Consider, for
example, the common case where a composition is made up of
certain base material which is then repeated, developed, trans-
posed, etc. In this case, the score could contain several in-
stances of a particular musical event, but each instance may
be transformed in some way. One need only consider one
of the examples in the literature of the "theme and variations"
form to find a good illustration of this point. In terms of a tree
structure, we see that this case could be described as there
being more than one instance of a particular sub-tree. Where
we can derive power from this observation is in stating that
consequently, there should only be one master-copy of that
sub-tree, and at each instance we store only the sub-tree
identifier and the transformations to be effected for the
particular instance4 .

There are a number of benefits to this approach. First,
it is easy to isolate all instances of "motif A", for example.
Second, the size of the score is reduced considerably, since
only one copy of the motif is saved5. Third, it is clear that
our file system and data structures must be able to treat any
musical event as a free-standing self-contained structure;
a sub-score. Therefore, any sub-score can be played, edited,
etc., on its own. Most importantly, any change to the master
copy of any sub -score in a composition will be reflected in
everyinstanceof that structure.Thus,if a re-occurringfigure
in our composition is an octave jump up, followed by a semi-
tone fall, by simply changing the master copy of this figure to
a major triad, all instances would be similarly affected by this
one action!

1.2.4. Summary

In the preceding discussion,an argument has been made
for the adoption of a hierarchically based internal representa-
tion of scores. Through this approach we can provide the basis
for the composer's ability to addresshimself/herself (and his/
her commands) to the "chunks" of the score with which he/
she is concerned. Furthermore, through the use of instantia-
tion we are able to exploit the redundancies inherent in
musical structures and gain savingsboth in space and ease of
operation.

1.3 Objects & Timbre Definition

1.3.1. Introduction

If we are going to synthesize sounds, we have an obviohs
interest in being able to control "timbre"; however, the nature

Page12

of "timbre" for musical purposes is rather elusive. Traditional
explanations (e.g. Helmholtz, 1954) have restricted their
description to the physical (viz. acoustical) properties of
sounds. Two things are clear, however: that ideally, timbre
should be described in the perceptual, rather than acoustical
domain; second, timbre is a multi-dimensional attribute of
sound, such that the number of dimensions inhibits the under-
standing and control of the perceived phenomenon. Thus, our
prime objective is to establish the underlying structures which
will: (a) facilitate the implementation of different high-level
external representations of our repertoire of timbres, and
(b) support an effective editor for exploring the properties of
the multi-dimensional attributes of this repertoire. Through-
out, the intention is that initial work at the lower acoustical
level will provide insights enabling us to develop a control
mechanism functioning at the higher perceptual level. As our
insights into the nature of timbre improve through
experience and experimentation, we are able to refine our
external representations accordingly.

In our approach the analogy to the timbre of a musical
instrument is an object (after Schaeffer, 1966). By our defi-
nition, an object is: "a named set of attributes which will
result in sounds having different pitches, durations, and ampli-
tudes to be perceived as having the same timbre". In our
definition, it is significant that we have stated nothing about
the nature of those attributes constituting an object. The
notion of an object simply provides a conceptual framework in
which the composer can viewhis activities. All objects have a
name and all instances of a particularly named object sound
"the same,,6 . Conceptually, this is all that the composer need
understand, plus the fact that there is an editor which will aid
him/her in (a) controlling the palette of timbres-by defining
and modifying his/her own set of objects, and (b) "orches-
trating" the notes in a score from this set of objects.

In contrast to the SYN4Bsystem at IRCAM (Rolnick,
1978), our approach to the problem is to take a few well-
proven configurations of unit generators and "package" them
so as to optimize on the ability of the composer to explore
their full potential. Clearly this decision relates to the issue of
strength vs. generality. Our choice is to take the more limited
but strong approach. Weare confident that research such as
Moorer (1977) and Le Brun (1977) will help bring an ever-
expanding repertoire of computer-based sounds to the reper-
toire of composers. Our prime concern is with the develop-
ment of tools to aid the composer in controlling these sounds
in a musical context.

Havingadopted this approach, the problem is to select
those instruments or acoustic models which we will support.
In this decision, the prime considerations are: the range of the
timbral palette, suitability to efficient implementation, ease
of control protocol, and perhaps most of all, how well the
model lends itself to the implementation of a user-congenial
interface. Moorer (1977) givesa good survey of the alterna-
tives. The models which we have chosen to support-each of
which is implemented in hardware in the SSSP digital synthe-
sizer (Buxton, Fogels, Fedorkow, Sasaki & Smith, 1978)-are:
fixed waveform, frequency modulation, additive synthesis,
waveshaping,and VOSIM.

Computer Music Journal, Box E, Menlo Park, CA 94025 Volume II Number 4

2. Implementation

This section presents the implementation details of a
data structure which conforms to the general description out-
lined in the previous section. A version of the structure has
been implemented and utilized with successat the University
of Toronto. An overview of this structure is presented in
Figure 3. Here we see that there are four main types of struc-
tures, each of which constitutes a particular type of file. These
are:

1.
2.
3.
4.

Scores
Objects
Functions
Waveforms

Each of these file types is made up of various composite struc-
tures. The purpose of this section, therefore, is to present the
internal representation of each of these four types of files, and
to define the methods of communication, or links, among
these files.

Since it is a structure common to various file types, and
since it is the prime medium of inter-file communication, we
shall begin by presenting the form of the symbol table data
structure 7.

Score Score symbol table
Objects

(timbral characteristics)

...

3. Inter-file Communication

3.1. The Symbol Table

The symbol table is the method of linking auxiliary files
to both object files and score meSoTherefore, both score and
object files contain symbol tables.

A symbol table is an array of symbol structures, where
the size ofthe array, or table, corresponds to the number of
symbols, or entries, in that table8. The symbol structures for
a particular table are stored in contiguous memory. In the pro-
gramminglanguage "C" , each entry in a symbol table has the
following structure format:9

struct symbol

{
char name [FNAME_SIZE] ;
int stype;

-Filename
- Contains fields for type

of symbol.
- Value of symbol

(may be pointer)
int svalue;

};

The name field simply contains the name of the file associated
with the symbol in question. The stype field then indicates the

Object symbol table Functions F segments

...

W segments

FileLinks:
from disk: via file name in symbol table.

in memory: via pointers in svalue in symbol table.

Note: Object associated with a particular Mevent of type
MUSICAL-NOTE. is accessed by an index into score
symbol table...

nil
(can be either notes (terminals)
or sub.scores (non-terminals))

\ ~ \¥
SCORE FILE

......

..-
OBJECT FILES

~ ,/\, ¥

FUNCTION AND
WAVEFORM FILES

Figure 3: Overview of Data Structures

Page 13Buxton, Reeves, Baecker, and Mezei: The Use of Hierarchy and Instance in a Data Structure

"-

...

type of me this entry in the symbol table is. Valid symbol
types include:

1. OBJECT
2. SCORE
3. FUNCTION
4. WAVEFORM

Each of these symbol types corresponds to one of the me
types mentioned above, and will, therefore, be dealt with in
more detail below. Finally, if the me in question is in primary
memory, the third field of the symbol entry-the svalue-con-
tains a pointer to the file's core image.

We see, therefore, that access to subordinate mes is
accomplished through a symbol table, via the name fields for
mes not in primary memory (i.e., those requiring system i/o),
and via the svalue field for others (thereby avoidingthe time.
consuming i/o)10.

NOTE: A particular symbol entry is accessed by pro-
viding an index into the table. An important convention to
note in this regard is that the first entry in the table is accessed
by an index of one (1) not zero (0). An index of zero into the
symbol table has the specialmeaning that the symbol to be
referenced is not yet defined; a default symbol of the appro-
priate type (context-dependent) is substituted. Thus, the
mechanism for handling default situations is provided, the user
never having to provide details beyond his current concern.

4. File Types

4.1. SCORE Files
lii

For our purposes, a score is essentially a list, or sequence
of musical events, calledMevents. Thus, it can be seen as a per-
formance script for a composition. A great deal of effort has
been spent in providing the flexibility in the data structures of
a score to enable the structuring of a score in a hierarchic
manner.

A SCORE me consists of three main data structures:
a score structure, a linked list of Mevent structures, and a
symbol table. Wewill now proceed to present the details of
each of these structures.

4.1.1. 'score' Structures

The score structure functions as the header to the
SCORE file. Besidesstoring the me name and a "magic" num.
ber identifying the me as type SCORE, it contains pointers to
the head and tail of its associated list of Mevents. As well, it
contains a field indicating the total duration of the score, and
links to functions affectingthe score's performance.

When the score is savedon disk, all of the score structure
is written first, followed by the symbol table, and then the
Mevents in sequential order. Thus, the link fields are not
needed on disk.

The detailed composition of the score structure is as
follows:

struct score

{
int magic; . Magicnumber
char fname[FNAME_SIZE];. File name

I,
I
III'

Page 14

int nsyms; - Number of entries in
table

-Pointer to symbol table
- Total duration of score
- Total number of Mevents
- Pointer to start of

Mevent list
- Pointer to end of Mevent

list
- dynamic (volume)

variation
- tempo variation
- entry-delay (articula-

tion) variation.

struct symbol *sym_table;
float toLdur;
int nMevents;
struct Mevent *head;

struct Mevent *tail;

char dyn_ind;

char tempo_ind;
char deltaLind;

};

The last three fields are indices into the SCORE symbol table
accessing functions controlling global features of the score:
dynamics, tempo, and articulation, respectively.

4.1.2. The Mevent

As stated above, an essential component of a score 'is a
sorted list of musical events which we call Mevents. While
there are various recognized types of Mevents allowable in this
list, they all conform to the following structure template Y

struct Mevent

!truct Mevent *tlink; - Pointer to next Mevent
Last Mevent tlink =
NULL.

- Pointer to previous
Mevent. First Mevent
blink = NULL.

- User definable tag
- Entry delay before start

of next Mevent.
- Mevent type
- Field is type dependent"

struct Mevent *blink;

int tag;
float deltL t;

char type;
char MEfldI ;
int MEfld2;
int MEfld3;
int MEfld4;
int MEfldS;
int MEfld6;

};

"

As can be seen from the above, Meventsare represented as a
doubly linked list (i.e., pointers to both the previous and next
Mevents). This is to facilitate insertions, searching and other
transformations on the list (playing the score in retrograde, for
example)12.In the list, the order of the linking specifies the
order in which the Meventsare to be played. The delta_t field
in each structure specifies the time between the start of the
current Mevent and the start time of the next. If this value is
zero, the Meventsare played simultaneously (such as with a
chord). On the other hand, if the delta-t value exceeds the
duration of the Mevent, the result is a rest whose duration is
equal to their difference.

The currently.available types of Mevents (as specified in
the type field) are: MUSICAL_NOTE, and SCORE. An
Mevent of the MUSICAL_NOTE type is simply a singlesound

Computer Music Journal, Box E, Menlo Park, CA 94025 Volume II Number 4

.....

event. A SCORE-type Mevent is just that, a (sub-) score which
commences at a particular point in a composition. It is this
implementation of the notion of sub-score which enables us to
create scores which are hierarchically structured. More for-
mally, we can view a score as a tree structure in which a
SCORE Mevent (called Mscore) constitutes a non-terminal
node, and each MUSICAL_NOTE Mevent (called Mnote)
constitutes a terminal, or "leaf", in the tree.

In the above structure, one feature is of particular note.
This is the choice of using "delta" rather than "absolute"
values for time (i.e., the entry delay value delta_t). This
choice is based on the ease with which several instances of the
same sub-score can be merged into another "master" score.

Since the interpretation of the Mevent structure fields
MEfld 1-6 are dependent on the Mevent type, we shall now
consider the individual types in more detail.

4.1.2.1. The MUSICAL_NOTE: Mnote

An Mevent of the MUSICAL_NOTE type is a single
sound event which has certain characteristics (or parameters)
as defined by the following Mnote structure. (Note that this
structure exactly follows the template of the Mevent
structure.)

struct Mnote

kruct Mevent *flink;
struct Mevent *blink;

-Pointer to next Mevent

-Pointer to previous
Mevent

-User definable tag
-Entry delay before start

of next Mevent.
- Mevent type: set to

MUSICAL-NOTE
- Volume of note
- Note frequency
- Index into symbol table

to access object (timbre).
- Output channel of note
- Duration of note

int tag;
float delta_t;

char type;

char volume;
float frequency;
char objecLind;

char chan_no;
float duration;

};

4.1.2.2. The SCORE: Mscore

An Mevent of the SCORE type is called an Mscore. The
fields of the Mscore structure are given below. Again, note that
the structure format follows that of the Mevent.

struct Mscore

1truct Mevent *flink;
struct Mevent *blink;

-Pointer to next Mevent
-Pointer to previous

Mevent
-User definable tag
- Entry delay before start

of next Mevent.
- Mevent type: set to

SCORE
-Relative shift for sub-

score. (vol. is log, so is
addition)

int tag;
float delta_t;

char type;

char vol_factor;

float pitch_trans; - Relative shift for sub-
score. (i.e., pitch trans-
position)

- Index into symbol-table
to access sub-score.

- Determines if time_fac-
tor affects entry _delay,
duration, or both

-Temporal transformation
(augmentation/ diminu-
tion) of sub-score.

char score_ind;

char time_interp;

float time_factor;

};

There are a few very important points to note regarding
the use of sub-scores. First, note that each appearance of a
particular sub-score constitutes an instance rather than master
copy of that sub-score. The difference is that there is bnly one
master copy of the sub-score (accessed through the symbol
table) and any changes to the original are reflected in each
instance during a composition. Therefore, if we viewa score as
a tree structure, then the pitch_trans, vol-factor, and time-
factor fields of the Mscore structure will effect transforma-
tions on the sub-score (or sub-tree) below them. Musically,
therefore, these fields allow for the occurrence of the sub-
score starting at any pitch (i.e., transposition), the dynamics
to be scaled, and the augmentation and diminution of the time
structure13.The result is that we can obtain severalversions of
a single "score", while maintaining only one copy of the
original.

4.1.3. SCORE Symbol Table

The types of symbols which are legal in a score's symbol
table are: FUNCTION, (sub) SCORE, and OBJECT. If the
stype field of a symbol's entry is UNDEFINED, a default
symbol is substituted. Ifthe entry's svalue is non-zero (viz.,
not UNDEFINED), there is an image of the symbol in primary
memory and the svalue is a pointer to it. Otherwise, the
svalue must be UNDEFINED.

Finally, if the nsyms field of the associated score struc-
ture equals 0 (zero), there is no symbol table, the field *sym-
table should equal NULL, and default values of the appropri-
ate type will be inserted during performance. The implica-
tions of this are (musically) important in that no ordering
of operations is imposed on the composer. He may, for
example, perform the pitch/time structure of a composition
before any thought is given to orchestration. Furthermore, he
may orchestrate the score with yet undefined objects (see
below), and still audition the work with default objects substi-
tuted. Finally, in either case the default object(s) substituted
may be user defined (Le., the user may personalize the system
by over-riding the system derIDeddefaults).

4.2. OBJECTFiles

One of the aims of the music system is to provide a
facility whereby a composer can specify his/her own palette of
timbres to be used ina composition. Each set of timbral
characteristics derIDedby the composer, called an object,
is then stored in a file named by the composer. Notes in a
score may then be "orchestrated" by establishing an associa-
tion with a particular object file. This is accomplished via the

Buxton, Reeves, Baecker, and Mezei: The Use of Hierarchy and Instance in a Data Structure Page 15

~~

"Ui

object_ind field of the Mnote structure, in combination with
the score symbol table (as outlined previously).

Wesaw above that there may be several instances of the
same (sub-)score in a composition. Similarly, there may be
numerous Mnotes of various durations, pitches, and ampli-
tudes, all derivingtheir timbral characteristics from the same
object. Furthermore, any change of the object file will cause
that change to be reflected in all instances of that object in a
score. Wesee, therefore, that the object functions as a type of
timbral "template". Finally, due to this template nature of the
object, the only restriction on how many instances of that
object which may occur simultaneously is the number of
oscillators in the synthesizer. This is in contrast with the
notion of "instrument" as developed in MUSICIV (Mathews,
1969), for example.

While all objects serve the same musical purpose of
timbral control, there exist different internal representations
for object data. These differences primarily reflect the dif-
ferent modes-or acoustic models-whereby sound can be
generated by the SSSPdigital synthesizer. Wewill see, there-
fore, that there are three main data structures in an object file.
These are: the object structure and symbol (table) structure
(both common to all objects, regardless of mode); and the
type_object structure, which contains the data peculiar to
the mode of that particular object.

.,

I:
R'

4.2.1. 'object' Structures

!II

The object structure contains information common to
all objects, regardlessof mode. Such information includes the
objects' name, mode, and a "magic" number to distinguish
OBJECT files (from, for example, SCORE files) during various
operations such as reading and writing. The structure also
specifies the number of critical resources (i.e. synthesizer
oscillators) required by that object. This information is repre-
sented as follows:

struct object
{
int magic; - Magic number
char fname[FNAME_SIZE];- File name
int nsyms; - Number symbols in table
struct symbol *sym_table; -Pointer to symbol table

nsyms long.
- Designates type of object
- Number of oscillators

needed.

int mode;
int noscils;

union type_object
struct fixedwLobject fwfobj;
struct fm_object fmobj;
struct bank_object bankobj;
struct ws_object wsobj;
struct vosim_object vosimobj;

*data; -Defines "*data" as a
pointer to an object.

- Index into symbol table
to access basis of func-
tion time-scaling.

char rigidfunc_ind;

};

One field of the object structure warrants special attention.
This is rigidfunc_ind. As will be seen below, each mode of

Page16

object specification includes the specification of functions
which determine how parameters vary over time. The time
base of such functions, however, must be able to be scaled
over Mevents (e.g., Mnotes) of various durations. This is in
keeping with the notion of an object being a general template
for timbre. One problem is, however, that in compressing and
expanding functions we do not always want the scaling to be
linear. That is to say, if we consider the x (or time) axis of a
stored function as a spring, we do not alwayswant the spring
to be of uniform stiffness. In imitating sounds which occur in
nature, for example, we would want the attack and decay por-
tion of the amplitude function to be more "stiff' than the
steady-state. Similarly, in other objects we might want just
the opposite. In view of this problem, each object has associ-
ated with it a user-definable "rigidity" function, which deter-
mines how the functions of that object are to be scaled-in
time-in their various instances throughout a composition.
The rigidfunc_ind field provides, therefore, an index into
the symbol table which identifies the "rigidity" function for
that object.

>

4.2.1.1. Object Types

As was stated above, there are different methods of
representing objects which reflect the method of sound syn-
thesis used. These modes are as follows:

1. Fixed Waveform(FlXEDWF)
2. Frequency Modulation (FM)
3. Pulse Modulation (VOSIM)
4. Additive Synthesis (BANK)
5. Waveshaping(WAVESHP)

The amount and type of data required is different for each of
these modes. Therefore, there is a different type of structure
used for each. The definition of the structure peculiar to each
object type is given below. The appropriate structure for a
particular object's type-specific data is accessed via the *data
field in the object structure, whose mode field indicates the
structure's type.

4.2.1.2. FIXEDWFObjects

The fixed waveform synthesis mode utilizes a single
oscillator as a function generator. The only parameters at the
object level in this mode are: the waveform used, the ampli-
tude contour (or "envelope"), and the frequency contour (or
deviation over time). The amplitude and frequency contours
are stored functions (see FUNCTION files, below) and are
accessed through the object symbol table. The format for
FIXEDWFdata is as follows:

struct fixedwf_object

ihar fwLind; - Index into object symbol
table to define wave-
form.

- Index into object symbol
table for amp. function.

- Index into object symbol
table for freq. function.

char enveLind;

char freq_ind;

};

Computer Music Journal, Box E, Menlo Park, CA 94025 Volume II Number 4

4.2.1.3. FM Objects

The FM mode of object specification enables sound to
be synthesized by having one oscillator ("m") modulate the
frequency of another (the "c", or carrier oscillator). The re-
sulting relevant parameters include: the ratio between the
frequencies of the two oscillators (the "c:m" ratio), the
maximum degree of modulation and how modulation varies
in time, and the amplitude and frequency contours (as seen
with FIXEDWFobjects). The format of FM mode data is as
follows:

struct fm_object

itruct fixedwf_object car; - Carrier waveform (as in
FIXED_WAVEFORM)

- Index into object symbol
table defining mod.
waveform.

- Index into object symbol
table for mod. function.

- Max. Modulation Index
- C term in C:M freq.

ratio.
- M term in C:M freq.

ratio.

char mfwf_ind;

char mdev _ind;

int maxindex;
int cval;

int mval;

};

4.2.1.4. VOSIMObjects

The VOSIMmode enables voice-type synthesis via a
form of pulsewidth modulation. There are different degrees of
complexity possible; generally, the more complex, the more
oscillators or "VOSIM functions" must be used. Besidesthe
pulse-shape (waveform) select and the amplitude and fre-
quency functions, each VOSIMfunction also has the following
parameters: the pulse-width, how the pulse-width varies in
time, and the degree of randomization (to produce conso-
nants, or noisy spectra). The format for the VOSIMdata is as
follows:

struct vosim_object

ltruct fixedwLobject vosfn; - As in FIXEDWF.
char maxdev; - Maximum deviation (i.e.,

noise) factor.
- Index into object symbol

table for dev./time func-
tion.

- Index into object symbol
table for pulse-width
(i.e., formant) change
function.

- Pulse-width expressed as
frequency.

char dev_ind;

char pw_ind;

int pwf;

};

Note: Complex VOSIM objects utilize more than one
VOSIMfunction or oscillator. When this is the case a table of
vosim_object structures is kept in a contiguous portion of
memory. The number of entries in this table is givenby the
noscils field in the parent object structure.

4.2.1.5. BANKObjects

This mode enables the use of severalgenerators together, such
that each oscillator functions as one component, or partial, in
a complex tone. The frequency and amplitude of each compo-
nent may vary over time. The actual frequency of any compo-
nent is its partial number times the fundamental frequency
(where the fundamental frequency is considered partial
number I). The data for the various partials in a particular
object are stored in a table of bank_object structures. The
format of these table entries is given below. The number of
entries- which are stored in contiguous memory - is givenby
the noscils field of the object structure.

struct bank_object

{
struct fixedwLobj bnkmd; - As in FIXEDWF.
float partial; - Partial number (fund.

=I).

};

Note that the partial number is specified as a "float" value so
as to enable arbitrary partial structures.

4.2.1.6. WAVESHP Objects

Waveshapingis a technique which enables the synthesis
of complex sounds having time-varying spectra. The technique
makes use of a form of controlled non-linear distortion.
Essentially, the output of one oscillator is scaled by an index
(which may be a time-varying function), and then used as an
address into a look -up table. The sample taken from the table
(which contains the "distortion" function) is then used as a
waveform sample and therefore scaled in amplitude and sent
to a digital-to-analogue converter. The technique utilizes two
oscillator modules, and has its parameters stored in the
following structure format:

struct ws_object

ihar fwLind; - Index into object symbol
table to define waveform
previous to distortion.

- Index into object symbol
table defining envelope
of waveform after distor-
tion.

- Index into object symbol
table for frequency func-
tion.

- Index of distortion to
which dist_ind function
is scaled.

- Index into object symbol
table specifying time-
varying function for
dindex.

- Index into object symbol
table indicating wave-
form buffer containing
distortion function.

char envel_ind;

char freq_ind;

int dindex;

char dindfn_ind;

char djstfn_ind;

};

Buxton, Reeves, Baecker, and Mezei: The Use of Hierarchy and Instance in a Data Structure Page 17

T
,~

4.2.2. OBJECTSymbol Table

The only valid symbol types for object symbol tables
are: FUNCTION and WAVEFORc\1.Functions at the object
level provide the means of specifyinghow parameters of the
micro-structure vary in time. This is essential for sounds to
be of musical interest.

Just as with the score symbol table, if object.nsyms
equals 0, or if any function named in the table is UNDE-
FINED, default functions will be substituted. Again, the user
is able to override the system defined defaults.

4.3. FUNCTION Files

Stored functions are used throughout the various hier-
archies of the music system to control the variation of param-
eters over time. Just as there may be many instances of the
same score or object in a composition, there may be several
instances of the same function. In addition, each instance of
the same function could quite conceivably be affecting a
different parameter. Functions are stored as a set of straight
line segments which approximate a continuous curve. Each
file has a unique, user defined name. In performance, each
function is scaled in both the x and y domains according to
application. Since there is no set number of segments in a
function, we resort to using two different types of structures
for their representation. These are outlined below.

4.3.1. 'function' Structure

This is the "header" structure of a function. It contains
the function's name, a "magic" number to identify the file as
type FUNCTION,the total number of segments, and a link to
the segment data. The actual format of the structure is as
follows:

struct function
{
int magic;

"

- Magic number defining
function

charfname[FNAME_SIZE];-Filename
int nsegs; - Number of segments
char starty; - Initial y value
struct segment *breakpoint; - Pointer to breakpoints.

Functions as:

breakpoint [nsegs]

};

4.3.2. 'segment' Structure

The data for the actual segments is stored in a table of
segment structures. There is one structure for each segment
and all structures are in contiguous memory. Rather than
represent segments by integer breakpoints, we have chosen
a slightly different approach which is computationally more
efficient (when scaling functions during real-time perform-
ance). Simply, the y value is stored as would be expected, but
the x value is stored as a fractional value representing that
segment's relative duration with respect to the complete func-
tion. The format of the structure is as follows:

Page18

struct segment
{
float reldur - Relative duration of

segment
(0. <=reldur<= 1.)

- End Y value of segmentchar yval;
};

4.4. WAVEFORMFiles

Waveformsare a particular form of function which we
choose to treat differently than FUNCTION files. In the case
of a waveform, we store the function as a series of point
samples, where the number of points equals the size of a syn-
thesizer waveform buffer (i.e., 2048). Consequently, only the
y value of the function need be stored, the x value being the
index into the table. Besidesstoring the actual function data,
the waveform structure also contains a "magic" number to
distinguish it as type WAVEFORM,and the actual waveform
name. The data format for waveforms is:

struct waveform

{
int magic; - Magicnumber.
char fname [FNAME_SIZE] ;- File name.
int wfsamp[WFB_SIZE] ; - Waveformsamples.
};

5. Conclusions

It should be emphasized that this research is not to be
taken as a bit -by -bit prescription for others to emulate. The
more important aspect of this work is to be found in the
overall approach to musical data structures. The details of
these systems are constantly evolvingand changing. If readers
are interested in hearing about subsequent changes as they
occur, they are invited to con(act the authors.

6. Acknowledgments

The work described in this paper has been undertaken as
part of the research of the Structured Sound Synthesis Project
(SSSP) of the University of Toronto. The SSSP is an inter-
disciplinary project whose aim is to conduct research into
problems and benefits arising from the use of computers in
music composition. This research can be considered in terms
of two main areas: the investigation of new representations of
musical data and processes, and the study of human-machine
interaction as it relates to music.

The research of the SSSPis funded by the Humanities
and Social Sciences Research Council of Canada, while logistic
support comes from the Computer Systems Research Group
(CSRG) of the University of Toronto. This support is grate-
fully acknowledged.

7. Notes

1. We include performance as part of the compositional
process based on the opinion that a piece of music is not
completed until it is heard. While some theorists would
dispute its need, we would argue that composers of

Computer Music Journal, Box E, Menlo Park, CA 94025 Volume II Number 4

......

2.

conventional music have always had such aural feed-
back- in the mind's ear--as enabled by a familiarity
with the long tradition of western music; a tradition
which does not exist for the composer of contemporary
music.
This notion of an event being either a simple sound or
a more complex structure is somewhat similar to the
use of sound pattern (simple) and gemisches (complex)
in the system of the Institute of Musicology,Arhus,
Denmark (Hansen, 1977; Manthey, 1978).
In the grammar, non-terminals begin with an upper-
case character.
This notion of instance was developed and used exten-
sivelyby Sutherland (1963) in his SKETCHPADsystem.
This is admittedly at the expense of speed. However,
consider that if we do have to do an expansion before
the score can be performed, we are still no worse off
than the linked list representation of MUSIC V, for
example. Furthermore, we still have the hierarchic
representation intact, as a master "recipe" enabling
backup, transformation, etc.
Note that we use the notion of instance here in exactly
the same manner as during our discussion of scores.
That is, there is only one master-copy of any particular
object. Any change to that master-copy is therefore
reflected in every instance of the object. This provides
an efficient mechanism for refining the definition of a
trumpet timbre, for example, or changing all "trumpets"
to "flutes."
Note that in the discussion which follows, any name or
value specified entirely in upper-case characters (such
as OBJECT, UNDEFINED, etc.) is a defined constant
for the music system.
In the implementation described, the symbol table size
is limited to 256 entries, which has not proved to cause
any constraints on the user. We can, therefore, take
advantage of a space savingin that indices into the table
can be represented by a single byte of information.
(28 =256).
Note: all examples are given in the programming lan-
guage "c" (Kernighan and Ritchie, 1978). In the ex-
amples, a structure is an aggregate of data. The name
following the label "struct" is the name of the aggregate.
The names within the curly brackets define a template
for the data in the aggregate.The first value in each row
indicates data-type (char: 1 byte; int: 2 bytes; float:
4 bytes), while the second value is the variable name.
Values preceded by a "*,, are pointers to data of the
indicated type (such as a structure). Pointers occupy one
word of memory. Memory for such structures may be
dynamically allocated or freed, and severalstructures of
the same type may be allocated space in contiguous
memory to form a table, or vector, or structures (as with
a symbol table). Finally, variables terminating with a
value in square brackets (" [" and"] ") are arrays whose
dimensions are contained within the brackets.
Note the special case for WAVEFORMf1les,where we
interpret primary memory as the eight 2k word wave-
form buffers in the synthesizer. Thus, a non-NULL
svalue for a WAVEFORMentry indicates which of the
buffers (1- 8) contains the waveform.

3.

4.

5.

6.

7.

8.

9.

10.

11. It is important to note that the Mevent structure is
simply a template. It functions as a generalization for
the different types of events which may occur in a
score, and is included for purposes of convenience.
Many music systems, for example Tucker et al. (1977),
avoid linked lists in the score. Instead, "notes" are
stored in contiguous memory, the pointers then being
implicit. While such a representation provides a more
compact representation and a more efficient perform
program, editing-which is the prime function of our
system - is considerably less efficient. Furthermore, if
in using the linked list approach the performance is too
complex for the system to keep up with in real-time,
we have found that enabling a score to be "compiled"
into a more efficient representation is adequate for
handling these special cases.
Note that space/time trade -offs dictate that the
time -factor field affects either Mevent durations
or delta- ts, or both (as determined by the
time_interp field).

12.

13.

8. References and Bibliography

Baecker, R. M. (1969). Interactive Computer-Mediated Ani-
mation. MIT Project MAC, Report No. TR-61, Cam-
bridge, Mass.

Benade, A. (1976). Fundamentals of MusicalAcoustics. New
York: Oxford University Press.

Buxton, W., & G. Fedorkow, (1978). The Structured Sound
Synthesis Project (SSSP): an Introduction. Technical
Report CSRG-92. Toronto: University of Toronto.

Buxton, W., A. Fogels, G. Fedorkow, L. Sasaki,& K.C.
Smith. (1978). An Introduction to the SSSP Digital
Synthesizer. Printed elsewhere in this issue of Computer
Music Journal.

Chowning, J. (1973). "The Synthesis of Complex Audio
Spectra by Meansof Frequency Modulation." Journal of
the Audio EngineeringSociety, Vol. 21, No.7, pp. 526-
34. Reprinted in Computer Music Journal, Vol.], No.2,
pp.46-54.

Grey, J. (1975). An Exploration of Musical Timbre. Ph.D.
Thesis, Stanford University. Distributed as Dept. of
MusicReport No. Stan-M-2.

Hansen, F. E. (1977). "Sonic Demonstration of the EGG-syn-
thesizer." Electronic Music & MusicalAcoustics, No.3.
Arhus, Denmark: Institute of Musical Acoustics, Uni-
versity of Arhus.

Helmholtz, H. (1954). On the Sensations of Tone. New York:
Dover Publications.

Kaegi,W.(1973). "A Minimum Description of the Linguistic
Sign Repertoire: Part]." Interface, No.2, pp. 14] -53.

(1974). "A Minimum Description of the Linguistic
Sign Repertoire: Part 2." Interface, No.3, pp. 137-157.

Kaegi,W., & S. Tempelaars. (1978). "YOSIM-A New Sound
Synthesis System." Journal of the Audio Engineering
Society, Vol. 26, No.6, pp. 418-25.

Kernighan, 8., & D. Ritchie. (1978). The C Programming
Language. Englewood Cliffs, N. J.: Prentice-Hall Inc.

Le Brun, M. (1977). "WaveshapingSynthesis." Unpublished
Manuscript, CCRMA,Stanford University.

Buxton, Reeves, Baecker, and Mezei: The Use of Hierarchy and Instance in a Data Structure Page 19

r

,~
I
I

Lycklama, H. (1978). "UNIX on a Microprocessor." Bell
Systems Technical Journal, Vol. 57, No.6, Part 2,
pp.2087-21O2.

Lycklama, H., & C. Christensen. (1978). "A Minicomputer
Satellite Processor System." Bell Systems Technical
Journal, Vol. 57, No.6, Part 2, pp. 2103-2114.

Manthey, M.(1978). "The EGG: A Purely Digital Real Time
Polyphonic Sound Synthesizer." Computer Music
Journal, Vol. 2, No.2, pp. 32-36.

Mathews, M. (1969). The Technology of Computer Music.
Cambridge: MIT Press.

Mathews, M., & F. R. Moore. (1970). "GROOVE-A Program
to Compose, Store, and Edit Functions of Time." Com-
munications of the ACM, Vol. 13, No. 12, pp. 715-721.

Moorer, J. A. (1977). "Signal ProcessingAspects of Computer
Music-A Survey." Proceedings of the IEEE, Vol. 65,
No.8, pp. 1108-1137. Reprinted in Computer Music
Journal, Vol. 1, No.1, pp. 4-37,1977.

Risset, J. (1969). An Introductory Catalogof Computer Syn-
thesized Sound. Murray Hill, N. J.: Bell Telephone
Laboratories.

Risset, J., & M. Mathews. (1969). "Analysis of Musical " Instru-
ment Tones." Physics Today, Vol. 22, No.2, pp. 23-30.

Rolnick, N. B. (1978). "A Composer's Notes on the Develop-
ment and Implementation of Software for a Digital
Synthesizer." Computer Music Journal, Vol 2., No.2,
pp.13-22.

Schaefer, R. A. (1970). "Electronic MusicalTone Production
by Nonlinear Waveshaping."Journal of the Audio
EngineeringSociety, Vol. 8, No.4, pp. 413-16.

II

Schaeffer, P. (1966). Traite des Objets Musicaux. Paris:
Editions du Seuil.

Schottstaedt, B. (1977). "The Simulation of Natural Instru-
ment Tones using Frequency Modulation with a Com-
plex Modulating Wave." Computer Music Journal,
Vol. 1, No.4, pp. 46-50.

Sutherland, I. E. (1963). "SKETCHPAD: A Man-Machine
Graphical Communication System." MIT Lincoln
Laboratory, Report No. TR 296. Lexington, Mass.

Tempelaars, S. (1977). "The VOSIM Signal Spectrum."
Interface, No.6, pp. 81-96.

Thompson, K. (1978). "UNIX Implementation." Bell Systems
TechnicalJournal, Vol. 57, No.6, pp. 1931-1946.

Thompson, K., & D. M. Ritchie. (1974). "The UNIX Time-
Sharing System." Communications of the A CM, Vol. 17,
No.7.

Truax, B. (1973). "The Computer Composition-Sound Syn-
thesis Programs POD4, PODS, & POD6." Sonological
Reports, No.2. Utrecht: Institute of Sonology.

Tucker, W.H., R. H. T. Bates, S. D. Frykberg, R. J. Howarth,
W.K. Kennedy, M. R. Lamb & R. G. Vaughan. (1977).
"An Interactive Aid for Musicians." Int. J. Man-Machine
Studies, Vol. 9, pp. 635-651.

Vercoe, B. (1975). "Man-Computer Interaction in Creative
Applications." Cambridge: MIT Studio for Experimental
Music,unpublished manuscript.

Xenakis, I. (1971). Formalized Music. Bloomington: Indiana
University Press.

