
Marking Interfaces 13.1

Haptic Input 24 October, 2016 Buxton

Chapter 13:

MARKING INTERFACES

Introduction
In this Chapter we discuss what we refer to as marking interfaces. These include what are often
referred to as paper-like and pen-based interfaces. They also include a number of interfaces that
have been called gestural. For the purposes of this book, what we mean by “marking interfaces”
are interfaces where the primary mode of interaction involves the user entering marks into a
computer, often much like the marks that one might make with a pencil or pen. This would include
(but is not restricted to) systems where one enters text using handwriting, or annotates or edits a
document using conventional proof-reader’s symbols.

With the growing use of pen-based computers, such as the Apple Newton shown in Figure 1, this
class of interface is of increasing importance.

While the term “paper-like” aptly characterizes a number of interfaces falling into this category, we
will not use the term for two reasons. First, as will be seen, some of the manifestations of marking
interfaces bear very little resemblance to things that we do with paper. Secondly, there are styles
of interfaces, such as form-filling using a standard GUI, which are paper-like, yet do not employ
marking.

Likewise, we have chosen not to employ the term “pen-based.” While a stylus is often the preferred
way to enter marks, it is certainly not the only one, so the term “pen-based” is overly restrictive.
Fingers, mice and pucks can and have been used successfully for many of the interactive
techniques that we will discuss.

Finally, people often refer to some of the styles of interaction discussed in this chapter as “gestural.”
Certainly it normally takes a gesture to create a mark. Despite this, what distinguishes the
interfaces discussed in this chapter is the mark that results from the gesture, not the gesture itself.
It is the mark, not the gesture, is the basis for the interaction. Hence, we distinguish marking
interfaces from gesture-based interaction, which is discussed in the next chapter. While this is not
a distinction that is universally made, hopefully it help clarify our discussion of user interfaces.

It is significant that the word “recognition” does not appear in the chapter title. Recognition is often
not essential for the success of marking-based interaction. The annotation of documents is one
such example. Character recognition is a “black hole” which has sidelined many a product that
could have otherwise been successful. One seldom hears someone saying, “I wish this piece of
paper could understand what’s written on it!” However, one frequently hears, “I wish that I had that

13.2 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

document with me,” or, “I wish that I could find that document.” Recognition is useful, but not
always essential.

Figure 1: The Apple Newton MessagePad 2000 Computer.

Stylus-controlled notebook computers are emerging as an important new
class and style of computer. The Newton, shown above, is one example.
However, while the approach is important, there are a number of problems to
be solved before this class of interaction reaches its full potential. The design
of the MessagePad 2000, for example, had to accommodate both pen and
keyboard based interaction.

One reason that recognition is often not as important as one might think is that the value of marking
often lies as much in human-human, as human-computer, communication. This can be seen in
tasks such as “chalk-talk” type interaction typically seen in meetings using whiteboards, and with
the annotation and signing of documents, for example.

CB
SS

LB

DE

LB

NT
DE LB

CB

WS

F
H

WW

TE

JM

Figure 2: The 49er “Double Scrape.”

“Chalk-Talk” type marking notation is used to specify the spatial and temporal
aspects of a football play.

Consider the 49er “Double Scrape” example shown in Figure 2. This is a great example of how
"chalk-talk" annotation can be used to notate very complex temporal and spatial information, such

Marking Interfaces 13.3

Haptic Input 24 October, 2016 Buxton

as a football play. The notation is something that every kid that has played sports can understand.
It requires no computer training, and makes communicating this kind of information between
humans easy and natural. In contrast, try specifying this same information to a computer using a
conventional keyboard or standard GUI.

Figure 3:The Liveworks Liveboard

The Liveboard is a 170 c.m. display with which one can interact with a
wireless stylus or a conventional keyboard. It is an electronic whiteboard
mainly intended to support meetings.

With the introduction of electronic whiteboard technologies, such as the Liveboard illustrated in
Figure 3, the need to support such chalk-talk type dialogues will grow, as will the expectation to be
able to communicate with computers using this same type of fluid notation.

Already there has been some early work geared at enabling users to communicate the same type
of complex spatial/temporal information to a computer. Perhaps the first example was a system
called Genesys developed by Ron Baecker at MIT (1969). While this work on “picture-driven
animation” was done early in the history of computer graphics, and not well known, it has significant
relevance to future marking interfaces.

This is illustrated in the four frames of an animation from Genesys that are shown in Figure 4. Each
frame shows a duck, as well as a dotted curve that goes from the lower right to the upper left of the
frame. Hand-drawn digital ink lines make up both the curve and the duck. However, the duck and
the curve serve different purposes. The duck is the protagonist of the animation. The curve defines
the path along which this character is to move.

It also determines the speed at which the duck moves. This was defined by the speed, or dynamics,
with which the curve was drawn by the animator. Each dot on this motion curve represents one
uniform time interval. In each successive frame, the duck moves to the next dot. Where the dots
are close together, the duck moves just a short distance from frame to frame. Conversely, where
they are widely spaced, there is a correspondingly larger distance traveled between frames. Thus,
the duck’s speed varies inversely with the dot density.

Now all of this can be related back to our conversation about “chalk-talk” diagrams simply by
imagining the duck being replaced by the squares and circles representing the football players in

13.4 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

the 49er “Double Scrape”, and each one having its own motion curve. Figure 2 can then be seen
as a graphical script for an animation that we see in our mind’s eye. The sad thing is that, despite
the common usage of this type of diagram, and despite the existence proof of Genesys, today’s
computers are singularly unsuited for handling this kind of rapid, simple articulation of
spatial/temporal relationships. This is even more disappointing, given how long ago Genesys was
done.

Figure 4: Picture-Driven Animation

Four frames from an animation of a flying bird are shown. A line has been
drawn to specify the path that a bird's flight should follow. The speed at which
the line was drawn controls the speed of the flight. This is an excellent early
and important example of the power of lines to specify complicated spatial
and temporal information to a computer. (From Baecker, 1969.)

Comparison to other styles of interface

To be done still:
• for comparative evaluation of marking and other input techniques: cover Gould & Salaun

(1987); Compare Wolf (1988) to Wolf (1992) and incorporate differences (if any).
• for comparison of handwriting versus other interaction techniques cover Mahach (1989)
• for study on prognosis of pen-based interfaces, see Briggs et al, 1993.
• also, include discussion of Morrel-Samuels, P. (1990)

Wolf (1992) undertook three experiments to investigate the use of marking based interface
techniques in working with a spreadsheet. In her first experiment, she compared three
conditions. In the first condition, the spreadsheet (Lotus 1-2-3) was operate with in the
conventional way, via a keyboard. The second and third conditions employed marking. In one,
subjects marked directly on the screen. In the other, an indirect approach was used. The stylus
was operated on an opaque tablet which was physically separate from the display. The main
result from this experiment was to show that in both marking conditions subjects completed the
tasks in 76% of the time taken with the keyboard interface. One interesting aspect of the results
was that there was no statistically significant difference in performance between the direct and
indirect marking conditions. (However, since a smaller and harder to read display was used in
the direct condition, one should not immediately assume that these results generally hold. When
using a measure that factors out some of the readability differences of the displays, the direct
method was marginally faster)

Marking Interfaces 13.5

Haptic Input 24 October, 2016 Buxton

Operation Marking Keyboard Keyboard/Mouse

Mark Range

Erase

Copy

Select using

cursor key s, Return
Drag through range

(or click f or single cell)

Select range

Choose Clear f rom Edit menu

Click OK

Select range to copy

Choose Copy f rom Edit menu

Select target range

Choose Paste f rom Edit menu

Select target cell

Ty pe " =sum("

Drag through range

Ty pe ") "

Select range

Choose Insert f rom Edit menu

Select cell

Ty pe

Select cell

Drag through characters

Ty pe

/re

Select range

/c

Select range to copy

Mov e to target range

Select target range

Sum Ty pe, e.g.,

" @sum(A2..G2) "

Insert row (col)

(e.g., 2 rows)

/wir (/wrc)

Select range

Enter Print Ty pe

Change F2

Change characters

(or rety pe cell)

(Expt. 1, 2, 3) (Expt. 1, 2) (Expt. 3)

Table 1: Gestural, Keyboard and Mouse/Keyboard Commands used in the experiments of Wolf.
(After Wolf, 1992)

The CRT display used in the keyboard condition in experiment 1 was also easier to read and
larger than the LCD panel used in the direct marking condition. In order to factor out differences,
a second experiment was run comparing the keyboard and direct marking conditions, using the
same LCD display for each. The results were consistent with those of experiment 1, with the
marking technique resulting in the task being performed in 69% of the time required or the
keyboard technique.

In the previous two experiment, the non-marking spreadsheet was operated by keyboard only.
There was a desire, therefore, to compare the marking technique to a spreadsheet that used a
mouse as well as a keyboard. Hence, a third experiment was performed, this time comparing
Microsoft Excel on an Apple Macintosh with the marking interface. On the average, subjects
completed the tasks in 58% of the time required by those using the mouse/keyboard combination.

Given the fact that one would expect the mouse/keyboard approach to perform better than the
keyboard alone, this result is surprising at first (since the marking time was only 76% and 69% of

13.6 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

the keyboard times in experiments one and two, respectively, compared to 58% in experiment 3).
However, this seeming discrepancy can likely be explained by the fact that the subjects in
experiments 1 and 2 were experts in the keyboard technique, whereas there were two distinct
populations (novices and experts) combined in the result for experiment 3.

This leads us to a very important observation that falls out of the results of this experiment.
Throughout this book, we have been working from the basis that the objective of HCI is to
accelerate the process whereby novices perform like experts. Well, this experiment's results give
us another example of how this can be achieved through appropriate design.

Figure 5: Annotating of Electronic Documents

The images highlight the figure/ground contrast between the handwritten
annotations and the computer printed text in two electronic documents. The
first is a document annotated using a stylus within CompuThink’s Paperles
Office , and the second is an electronic fax annotated within Symantec’s
WinFax PRO.

Using the mouse/keyboard technique (which reflects state-of-the-art current practice), the novice
users were much slower in task performance than the experts. Yet, using the marking technique,
the performance of the experts was only marginally better than the novices, and both groups were
much better than the experts in the mouse/keyboard condition. (Remember, that there were no
"experts" in the marking condition, yet performance was significantly superior to the
mouse/keyboard condition where there was expertise. Using markings, "experts" performed the
tasks in 73% of the time taken in the mouse/keyboard condition, in which they actually had
"expertise.") In summary, what we have is another example where, by virtue of the interaction
technique, the novice is immediately enfranchised with the performance of an expert!

Marking Interfaces 13.7

Haptic Input 24 October, 2016 Buxton

Figure 6: Hand Marking of Trading Form

It is clear in the figure what was written by the computer versus by the trader.
The contrast in line quality establishes a clear figure/ground relationship
between the two. If there was character recognition, and what was written by
the human was echoed in a pristine computer font, this interface would work
less well. (Image: Brad Paley)

Marking vs. Recognizing

• paint programs
• Newman Marking, 1975 - ref: Newman (1986).

Marking was a program written by William Newman on the Xerox Alto computer. Marking was
essentially a paint program like MacPaint, with one major difference: in Marking you could
paint directly onto the page of an existing document, such as one containing graphics or text.
There is a user's manual in the Alto User's Handbook (1976). Marking didn't do recognition of
proof-reader's marks. Rather, like Wang's Freestyle system (discussed below), recognition
was on the part of the user, not the machine: the hand-drawn marks on computer "typeset"
documents established strong figure/ground relationships that provided natural and easy
distinction between the annotation and the original document.

13.8 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Figure 7: Pen Input in a Point of Sale Terminal

Here a small digitizer is used to capture the customer’s signature in a point-of-
purchase credit card transaction.

Emphasise the figure/ground issue
for annotation, see also Whittaker et al (1994), Weber (1994), Hardock (1991; 1993)
chalktalk=>black/whiteboard
MacPaint+projection = electronic whiteboard
coupled with telecommunications->shared drawing
CSCW
low level example, fax

Marking Interfaces 13.9

Haptic Input 24 October, 2016 Buxton

Figure 8: The CrossPad Portable Digital Notepad

The CrossPad is an example of an emerging breed of embedded computers
that are bringing us into the era of ubiquitous computing. It appears to be a
conventional clipboard with a pad of paper. However, the contents of up to 50
pages of notes written on the paper can simultaneously be electronically
captured in the clipboard. They can then be uploaded into a conventional PC
for storage, indexing or optionally fed into a character recognition and
converted into ASCII text.

Wang Freestyle is an example of economical but effective design. It illustrates how much one
can achieve with very little.

Freestyle is designed to support the annotation of documents. A usage model is, you send a
copy of a document to someone by email, they annotate it using Freestyle, and then return it
to you. You then make the changes. Annotations are made with a stylus, very much as would
be made with paper and pencil. Voice annotations are also supported. Finally, while
recording the voice, all stylus movement and action (pointing or marking) is captured as a form
of animation, which is stored synchronized with the voice.

The copy of the document that is mailed is only a "dumb" bit-map (actually, tiff file) snap-shot
of the original. The system has no recognition capability. The annotations are simply added
to the "snap-shot." As with paper and pencil, this means that the user is unrestricted in the
markings used, as long as they are comprehensible by the reader. But also like paper, the
user then needs two versions of the document in order to make any changes: the annotated
copy and the original.

The power of Freestyle comes largely from: (1) integration with the mail system, (2) the
strength of the figure-ground contrast of hand annotations on top of "typeset" material. It is an
example of careful design giving rise to a lot of benefit.

13.10 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

A potential problem with Freestyle is that it works so well that you may be led to have
expectations which cannot be met. By not including recognition, Wang was able to side-step a
hard problem, and get to market early. The challenge of this approach, however, is to avoid
being boxed in by the design decisions made, and being able to make a smooth transition to a
smarter system that includes recognition capability.

For more information on Freestyle, a demonstration appears on SIGGRAPH Video Review 45
(1989). See also Perkins, Blatt, Workman and Ehrlich (1989), Francik and Akagi (1989) and
Levine and Ehrlich (in press).

For a recent revisit to the concepts introduced by Freestyle, see RichReview (Yoon et al.,
2014), which is a wonderful piece of work.

Marking + Speech

Wang Freestyle

 annotation with synchronized voice

 combination of marking & voicemail

HP’s FiloChat

 portable device

 records voice as you take notes

 notes are index into speech

 see also Xerox work

RichReview (Yoon et al., 2014)

 updates the best of Freestyle and FiloChat

 couples with modern hardware and software

 gives promise to concept becoming broadly available and effective

From now on, unless obvious or otherwise stated, we shall be dealing with recognition systems.

Recognition

 early on-line character recognizers:
o Teitelman (1964), Brown (1964), Bernstein (1964), Groner (1966), Ellis, T.O. &

Sibley, W. (1967) Bernstein & Williams (1968) Ledeen (1967- [Described in
Newman & Sproull 1973 (575-582) & 1979 (202-209)]). Suitable for student
implementation. Description of Recognizer: Burr (1983).

o Early math Anderson (email: anderson@rand.org,
http://www.rand.org/pubs/authors/a/anderson_robert.html,
http://www.rand.org/isg/staff.html,Telephone: (310) 393-0411 x7597

o Berson, (1977). Also, Nakagawa(1990) presents survey of on-line character
recognition for Japanese.

 Hardware for computer recognition of handwritten characters appeared quite early, being
described as early as 1957 (Diamond, 1957)

Not recent, but valuable survey of automatic recognition of hand-printed characters with extensive
bibliography is in Suen, Berthod & Mori (1980). A shorter, but more recent survey is Tappert,
Suen & Wakahara (1988), which has an extensive bibliography. Discussion of evaluating different
techniques is found in Litvin, 1982. Plamondon, Suen & Simner (1989) and Suen (1990) gives a
good updates on the current state of the art in recognition techniques. One of the most important

mailto:anderson@rand.org
http://www.rand.org/pubs/authors/a/anderson_robert.html
http://www.rand.org/isg/staff.html

Marking Interfaces 13.11

Haptic Input 24 October, 2016 Buxton

approaches to recognition (speech and mark) is the use of Hidden Markov Models. One example
of this usage is NAg, Wong & Fallside, 1986. Rubine (1991a; 1991b) presents the first trainable
recognizer for general markings. Mai, T. & Suen, C. (1990). present unconstrained recogniaer for
numerals.

 character vs word recognition: eg., latter in Apple Newton. Provides context, so can be more
accurate than isolated character recognition. Much the way that people can read words in
contect that are misspelled. On the other hand, there is a real problem when dealing with
words not in the dictionary. Then often strange results occur.

 Frankish, C., Hull, R. & Morgan, P. (1995). Interaction between recognition accuracy and
user acceptance

Applications:

 BIOMOD: Groner, Clark, Berman, DeLand (1971),

 Ambit: Rovner & Henderson (1969)

 Electronic Paper: Brocklehurst, E.R. (1991)

Ambit-G was just another one of the many TX-2 graphical applications, most of which were
driven with the TX-2 "Recognizer". (For example, a circuit layout program written by Fontaine
Richardson et al was interesting enough to cause Fontaine to leave Lincoln Lab - the home of
TX-2 - and start a little company called Applicon, an early leader in the field of CAD.) This was
a symbol (one kind of the current large family of "gestures") trainer/recognizer front-end based
on the Ladine symbol recognizer.

Application (1973) - several "gestures" design drafting system

 Irani, Wallace, & Jackson (1970) - for queuing systems. symbols in FW&C 206

• implications on computing environment. See Carr (1990) for description of design of operating
system developed specifically to accommodate pen-driven interfaces (namely, the GO
Technologies system).

Aha!: A Digital Ink “Processor”

One of the best examples of the use of digital ink was a product called Aha! InkWriter from Aha!
Software Corp. This was a “digital ink processor” in the same way that a product like Microsoft
Word is a “word processor.” With it, one can do things such as insert a word into a paragraph or
add an item into a list. In each case, space is filled or made available, and things like word wrap
behave as one would expect. An example of this is shown in Figure XX. Here, part of a sentence
is deleted in a paragraph.

13.12 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Figure 9: Automatic word-wrap with digital ink using Aha! InkWriter

Like with a regular word processor, when text is deleted, the paragraph
reformats itself and “fills in” the freed up space. With InkWriter, this is
accomplished through an understanding of basic document morphology
derived from the digital ink. First we see the original paragraph. Then we see
the words “a super team” drawn through to specify that they should be
deleted. Finally, we see the reformatted paragraph after the deletion.

When one thinks of digital ink recognition, one usually thinks of the problems of recognizing the ink
as a character (“a”, “b”, “c”, …). InkWriter is interesting in that it uses the features of the ink to
recognize document features, rather than content. It recognizes features such as words,
paragraphs, lists and drawings - the morphology of the document - not the underlying content.

Certainly the characters constitute part of the document, and InkWriter does support character their
recognition. This is something that one typically does later. The software implicitly assumes that
during transcription, the speed of capturing the digital ink is most important, and that recognition all
of the text, or key words, is something that happens during later revision.

InkWriter distinguishes between the digital ink of text vs drawings. As with text, the software is
capable of recognizing basic morphological features, each of which can be edited and processed,
including the recognition and “prettifying” of basic shapes. An example of this is shown in Figure
XX.

This example shows how one can select hand drawn objects and treat them in a manner similar to
what one would do with a conventional object-oriented drawing or CAD package. When selected,
familiar “handles” are displayed that enable transformations such as scaling and translation to be
performed.

In addition, selected objects can be “recognized” and transformed from hand-drawn digital ink to
computer-generated geometry consistent with what was drawn.

Marking Interfaces 13.13

Haptic Input 24 October, 2016 Buxton

Figure 10: Processing of digital ink drawings with InkWriter

As with conventional drawing programs, objects can be selected and
manipulated. In the top left figure, a hand-drawn circle is selected and the
editing “handles” are displayed. These enable the object to be scaled or
moved. When selected, an object can also be “recognized” which is what is
done here. The lower left part of the figure shows the hand drawn circle
replaced by proper geometry. The right side of the figure shows the same
thing, but this time for multiple objects.

Perhaps include description of Moran’s meeting support stuff too.
Poon, A., Weber, K. & Cass, T. (1995).
Weber & Poon (1994): Marquee

Extending OCR to Lines

• using pattern recognition and image processing techniques to convert hand-drawn figures and
sketches into "finished" drawings. Cohen, 1982; Hosaka & Kimura, 1977,1982; Shirai, 1982;
• note, this is line recognition, rather than object or picture recognition
• consider part of issue on-line vs batch

Semantic Power and Loading of Symbols

• Like "Semantic loading" seen in discussion of chord keyboards.

Simple Lexemes: Character Recognition

Augmented Lexemes: Embedded Meaning
• could include:
 • size
 • position
 • orientation
 • face (bold by pressure cue, for example)
 • style (italic by slope, for example)
• extreme case, signature recognition (Herbst & Liu, 1977)
 • may only recognize features, and not content (characters of name) at all!
• picture recognition: Herot (XX)

Symbols as Words, not Characters
• simple commands: delete
• music notation / GEdit (Kurtenbach & Buxton, 1991)

13.14 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

• circle for scope
• Pitman shorthand (Leedham, Downton, Brooks & Newell, 1984), Leedham, C.G. & Downton,
A.C. (1986) Brooks & Newell (1985). Like Braille in terms of levels (see Chord chapter).
• simple drawing, Makkuni (1986)
• Lipscomb (1991)

Compound Symbols: from Words to Phrases
• proof-reader's symbols (give examples, include Kankaanpaa, 1988, ..., for example)

• chalk talk
• domain specific operation, eg. Konneker, 1984.
• implies vehicle to support chunking & phrasing

More Chunking: Embedding Graphical Attributes

• not just entering a shape
• can include line type and face
• can also easilly add other attributes, such as fill
• Eller, Leyerle & Pardikar (1994)
• note: fill not connected, therefore will be where problems lie
• reliability will reduce with number of shapes in vocabulary
• shapes in shapes?
• "empty" fill for shape in filled bg.
• nevertheless, contrast with traditional methods

Text, Drawing and Page Orientation: Bimanual input applied to marking

with paper, rotate page

eg guiard writing

 take stuff from article

 include text and image of animation

 relevance to pen input and “chunking” i.e., all in one step

 tie in with emaeging flat panels

 importance to simplified and more natural UI design

Marking Interfaces 13.15

Haptic Input 24 October, 2016 Buxton

Figure 11: A Traditional Animation Stand

Note how the artwork is mounted on a rotatable base so as to maximize the
ease of drawing at different angles on the page.

Look at illustraions of text rotated

13.16 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Figure 12: Handwriting Styles.

Different types of handwriting present different levels of difficulty in automatic
recognition. The examples are presented in increasing order of difficulty.
(From Tappert, 1984).

Variations in Script: Style and Penmanship

Style:
• type of sign (for alpha-numerics: printed->hybrid->cursive)
cursive: Tappert (...) & Ehrich, Roger W. (1978)**, Ehrich, R.W. & Koehler, K.J. (1975)
• style => segmentation
• include Casio example

Penmanship
• quality of signal
• within and among users

Marking Interfaces 13.17

Haptic Input 24 October, 2016 Buxton

Figure 13: Variation of Printed Characters.

Even when restricted to discrete character recognition, variability in
penmanship makes the problem very difficult. The figure shows the range of
characters that, nevertheless, can be recognized by a commercial system
(from Ward & Blesser, 1985).

Speed and Efficiency

• the "I can type faster than I can write, so who needs it?" syndrome
• first, clearly right for power text entry
• (at least until Pitman shorthand->text works)

• somewhere, include stuff on graphical keyboards, and T-Cube (Venolia 1994)

from semantic loading:
• shorthand can give function key-like power
• exploiting embedded information:
• Mathematical formulae: spatial layout has semantics. Implicit. Form & content compatible.
• annotation: may be able to type string faster,
• but what about direct translation from mind's eye to screen
• position, size, orientation typeface/style (bold/italics) implicit
• simple keystroke simulation quickly shows slowness of printing more than compensated for.
• home position on device (time multiplex device: mutual exclusive, and competition for hand
resource)
• not back-and forth between keyboard and pointing device
• benefit maximized when editing characterized by relatively low volume of text entry and high
volume of navigation (i.e., movement of entry point)
• coupled with 2 hands: home position on task (space multiplex devices, since no competition on
hands as resource)
• eg, scrolling through document and selecting or editing words

13.18 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

• former example (1 handed), hand always on device, but would still have to move between text
(for selection/editing tasks) and navigation aids (scroll gadgets)
• this case, 2 tasks partitioned between hands, each simultaneously in "home" position

Paper and Digital Ink: Bridging the Gap
include discussion of Anoto-type technology.
Especially include Adapx exploitation of printying glyphs, as with Excel
(https://www.adapx.com/images/pdfs/Data%20Sheets/CapturxFormsforExcel_DataSheet_v1.0_w
.pdf)

The Graphics of Text

We tend to forget when we think about text input that there is a graphical component to what we
are doing. When we are just typing text on a keyboard using a word processor, we tend not to
focus on this. Yet, when we are preparing slides for a presentation, or laying the text in on a graph,
or doing text layout for an advertisement, this becomes far more “in your face.”

Take the text in the image below. The size, font, position, baseline and colour of the text, for
example, is in many ways as important as what the text says.

https://www.adapx.com/images/pdfs/Data%20Sheets/CapturxFormsforExcel_DataSheet_v1.0_w.pdf
https://www.adapx.com/images/pdfs/Data%20Sheets/CapturxFormsforExcel_DataSheet_v1.0_w.pdf

Marking Interfaces 13.19

Haptic Input 24 October, 2016 Buxton

Figure 14: Text as Graphics

In fact, as well as word processors, we have programs that are intended for doing text layout and
graphic composition, as opposed to text composition and editing (as in traditional word processors.)
What is often missed in thinking about text entry is how well suited marking style interfaces are for
the former, and how nearly all thoughts about using marking to enter text is with regards to the
former.

What is key to note in this regard is how, with a stylus, one can simultaneously input the characters
of the text, the size, the position, orientation, base line, and even the face, all in one step.
Furthermore, we can do so using skills that we have developed over the years in the everyday
world, using a pencil.

Contrast this with the steps, and associated complexity, that would result if you did the same kind
of layout with a conventional word processor, for example. And we don’t have to be doing page
layout or graphic arts for this to be the case.

Take the simple example of entering the following line of text:

22  22

Consider entering it into your computer with the “fast” keyboard and the “slow” stlus. There are
two problems that arise:

1. entering the superscript and

2. the “” symbol.

13.20 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Paper-like:

• print "22" where I want it.

Conventional Word Processor:
• type 22
• select second "2" by dragging through it
(itself a fairly demanding task requiring fine
motor control)
• select Format item on menu bar
• select Character from pull-down menu
• select Superscript from Character property
sheet
• select the down arrow beside the "Size" field
to reduce the size of the character by one
point, from 10 to 9.
• select OK button to close Character property
sheet
• select entry point for where to resume typing

Step 1: Specifying the superscript

Paper-like:

• print "" character where I want it

Conventional Word Processor:
• select item on menu bar
• select Keycaps desk accessory from pull-
down menu
• explore different combinations of "option" and
"shift" until character found
• close Keycaps DA by selecting close box at
left-top of the window

• type "" character

Step 2: Specifying the  symbol

Does this type of interface deserve the name "direct manipulation?"

 Speed of entry determined by graphical complexity of symbols (time to draw)

 Also is a function of the size & complexity of symbol set (can be cognitive load, and
resulting delay, in remembering symbol in complex set.)

Typing on a Graphical Keyboard vs Stroke Recognition

In pursuing pen-based interaction, our tendency seems to be to want to do with the electronic pen
that which we do with pen and paper, namely, enter text by writing or printing. This tendency is
natural, and reflects the concept of skill transfer that underlies much of what we have advocated in
this book. It is, in fact, something that is too little practiced.

But here we have a potential counter example, or at least, an example of where blindly following
any path might lead you to miss an opportunity. Consider the entry of basic text using a pen-based
computer. In evaluating techniques, one that should be considered in addition to character
recognition is the use of a graphical keyboard. As it turns out, as demonstrated by MacKenzie,
Nonnecke, McQueen, Riddersma & Meltz (1994), tapping on a graphical keyboard can be both
faster and more accurate than printed character recognition. (In their study, character recognition
was 41% slower and had 8.1% errors rather than 1.1% for tap typing).

Marking Interfaces 13.21

Haptic Input 24 October, 2016 Buxton

While not suggesting that character recognition has no value, we are suggesting that the
appropriateness of typing by tapping with a pen should be at least considered in designing a pen-
based application. This is something that can be determined on a case-by-case basis. There are
no absolutes. But, of course, if the tapping approach is used, there are a number of ways to
improve performance beyond the obvious.

One issue with graphical keyboards, regardless of whether they are operated by the finger, stylus,
or a mouse, is that they consume valuable real-estate on the graphics display. This is of special
concern on smaller hand-held systems. One approach to reducing this problem is to make the
graphical keyboard smaller. As Fitt’s law tells us, this comes at a reduction of typing speed.
Nevertheless, we can make use of Fitt’s law models to predict and evaluate the magnitude of this
cost. Another alternative is to make the graphical keyboard semi-transparent so as to minimize the
degree that it obscures the information on the display below it (Harrison, Ishii, Vicente & Buxton,
1995; Zhai, Buxton & Milgram, 1996). Finally, one could make the graphical keyboard “mobile” by
controlling its position with the non-dominant hand while tapping characters with a pen or other
device operate by the dominant hand. Coupled with semi-transparency, this would result in a
specific instance of the Toolglass technique (Bier, Stone, Pier, Buxton & DeRose, 1993) discussed
in the chapter on Two Handed Input.

A second thing which we can do in order to improve the speed of typing on a graphical keyboard
is change the design of the graphical keyboard so as to better represent the physical properties of
the hand. Hashimoto and Togasi (1995) introduced an oval design, shown in Figure 15, which
better matches the range of reach of the hand when holding a stylus. They reported a 16%
improvement in typing speed using this layout.

Figure 15: The Virtual Oval Keyboard (Hashimoto & Togasi, 1995).

An improvement of about 16% in text entry speed was reported using this
layout, which better reflects the range of reach of the stylus-holding hand.

A third issue with entering text by tapping on a graphical keyboard is that it is still significantly slower
than typing on a normal keyboard. On a graphical keyboard the optimal typing speed is mainly
governed by Fitt’s law, since you only type using one pointer (as opposed to eight fingers and two
thumbs). For beginners, search time, rather than selection may dominate the task, but for those
who know the keyboard layout intimately, Fitts rules the day. Thinking of things this way, one way
to raise the typing speed is to reduce the number of keys selection tasks that need to be performed.
One way to achieve this first practiced by Buxton and Kurtenbach (ref to come) and later by
Hashimoto and Togasi (1995) is to combine tap typing with marking menus (Kurtenbach & Buxton,
1994). Using this approach, if one wanted just the simple character, one taps it as would be
expected. However, if the key required a modifier, such as “Control” or “Alt”, one makes a stroke
starting on the graphical key cap, rather than a tap, where the direction (or posibbly shape) of the
stroke indicates the particular modifier. Using this approach, one can also reduce the time needed
to input other frequently used special characters, such as “Backspace”, “Shift”, “Delete”, “Space”
and “Return.

13.22 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

A good exercise which illustrates the value of some of the theory outlined in this book is to calculate
the improvement that this should result in for various types of text, and to then test the accuracy of
the calculations by experimentation. As a starting point, readers are referred to Soukoreff and
MacKenzie (1995) for an analysis of the theoretical upper and lower bound for entering text on a
graphical keyboard using a stylus. Of course, the exercise is not fully done, since Soukoreff and
MacKenzie don’t include the use of marking menus for special keys and modifiers in their analysis.
As always, there is more to do.

Finally, there are other approaches to implementing graphical keyboards which are intended to
optimize text entry using a finger or stylus. While not strictly marking interfaces, they seem best to
fit into the current discussion.

The first of these is the Fitaly One-Finger Keyboard. The keyboard is laid out so that the most likely
next character is adjacent, or near to, the last character entered. The idea is to achieve efficiency
by reducing hand or finger movement. The keyboard layout is illustrated in Figure XX.

Figure 16: The Fitaly One-Finger Keyboard as it appears on the Newton MessagePad

If we think about this keyboard in terms of Fitts’ law, we see that target size (W) is determined by
the size of the graphics of the keyboard. Also, for a given keyboard size, it is mainly the distance,
or amplitude (A) of movement which they are attempting to reduce. Clearly the reduction will be
determined by how well the layout fits the vocabulary used. While the layout may help in English,
it may make things worse in some other language (such as French or “C++”). Doing the analysis
and contrasting the benefits against the cost of learning a new keyboard layout (remember, that
unless the user knows the layout intimately, that there will be a visual search term in the analysis,
Tm, in the terminology of the Keystroke Level Model.) MacKenzie, Zhang, and Soukoreff (1999)
have actually performed the analysis and test comparing a number of graphical keyboard layouts,
including the Fitaly, QWERTY, Alphabetic, telephone keypad, and something called the JustType
layouts.

There are other approaches to keyboard layout that are intended to accelerate input. The last one
that we will look at briefly is called T9 (from “typing on nine keys”) from Tagic Communications, Inc.
While, the keypad is small, nevertheless there is only one keystroke per character. To get the whole
character set on 9 keys, each key contains multiple letters (the "5" key, for example, can be used
to type "J," "K," or "L,"). The T9 algorithm automatically determines from all the possible variations
what word you are typing by matching your keystrokes with completed words in a linguistic
database. Clearly, one of the issues here is that you need a different dictionary for whatever
language you are using. The keyboard is shown in Figure XX.

Marking Interfaces 13.23

Haptic Input 24 October, 2016 Buxton

Figure 17: The T9 Graphical Keyboard on the Texas Instruments' Avigo PDA.

Shorthand Marks

The use of shorthand versions of symbols is one way to increase the speed of entry in marking-
based interfaces. This approach can be used for entering alphanumeric and graphic data.
Figure 18, for example, gives an example of how a characiture of a transistor symbol can be used
as a form of graphical shorthand. The characiture visually resembles the symbol that it
represents (thereby providing a mneumonic aid), and is much easier and faster to draw. While
not all symbols lend themselves to such simplified representation, it is worth the designer’s time
to explore the degree to which it is afforded.

Figure 18: Using Simple Characiture to Specify Complex Object

The choice of shorthand symbol need not be between representative drawing
or some graphically unrelated symbol. This example shows how a simple
characiture can capture the key properties of the intended symbol (a
transistor), thereby providing the desired mnemonic value, while still being
simple to draw and recognize. (From Newman and Sproull, 1979, p. 180.)

Shorthand can also be employed to facilitate the entry of alphanumeric data. One approach is to
adapt traditional shorthand such as Pitman shorthand, to computer usage. (See Figure 19.) This
has been investigated by some researchers, such as Leedham, Downton, Brooks, and Newell
(1984); however, the approach is problematic. On the human side, there are relatively few people
who are skilled in shorthand, and acquiring the skill requires considerable training. Technically,
conventional shorthand also causes some serious problems due to the fact that the symbols
correspond to phonemes, not alphanumeric characters. Thus, even if one can enter the shorthand,
and it is correctly recognized, it must then be converted from phonemes to text. This is a rather
difficult task that pushes the state of the art.

13.24 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Figure 19: Pitman Shorthand

The above example of Pitman Shorthand is a transcription of “This is an
example of Pitman shorthand. You can transcribe speech very rapidly
(greater than 200 w.p.m.). However, you then have to convert the shorthand
into English. So, while the initial transcription is very rapid, the overall two-
step process is much more tie consuming.” (transcription courtesy of
Elizabeth Russ)

By having a one-to-one correspondence between shorthand and longhand symbols, the second
translation phase seen with Pitman shorthand can be avoided, thereby rendering the use of
shorthand more viable in many cases. One such example is the music shorthand (Buxton,
Sniderman, Reeves, Patel & Baecker, 1979) discussed in Chapter 7, in the section on Chunking
and Phrasing.

Figure 20: Entering an 8th Note Using Single-Stroke Shorthand

As described in Chapter 7, the SSSP music editor enabled notes and rests to
be entered with a mouse or stylus, using single-stroke shorthand. The
shorthand was mnemonic in that the entry stroke related to the desired
symbol. On the left side, an eight note F is specified to follow the quarter note
A. The ladder helps guide the entry point, starting the stroke in the lowest
space on the staff determines it is an F, and the shape – representing the
stem and one flag – indicates that the duration is that of an 8th note. On
completion, the rough hand-drawn stroke is replaced by a ”typeset” version of
the desired symbol. This is what UniStrokes and Graffiti did, but for
alphanumeric rather than music symbols. As we shall see, the idea of using
such a single-stroke shorthand precedes computers by a long-shot – going
back to Roman times.

One of the main attributes of the musical shorthand was that all of the attributes of a note (pitch,
duration, entry point) could be specified in a single gesture. For example, on paper, one would
typically write an 8th note in three steps:

Marking Interfaces 13.25

Haptic Input 24 October, 2016 Buxton

 Duration: the note form (note head, stem and flag)

 When: the entry point along the horizontal “time line” of the music notation

 Pitch: where, vertically, the note appears on the musical staff

In the music shorthand discussed in Chapter 7, it can be entered as a connected up-down stroke.
Hence, due to the economy of motion, a significant increase in transcription speed can be achieved
over pen and paper. (Remember that, unlike paper, what is displayed does not have to resemble
graphically the symbol written.) There is no need for training the recognizer for different users,
since all users use the same simple shorthand symbols. And since the shorthand symbols are
articulated in a single stroke, or a connected series of strokes, the recognizer is much simpler than
conventional recognizers. We shall go into this in more detail below, in our discussion of
segmentation.

Not surprisingly, the idea of a shorthand that uses efficient single stroke symbols has also been
developed for entering alphanumeric characters. One such example is the T-Cube system
developed by Venolia and Neiberg (1994). This system used strokes and radial menus as an
alternative to character and handwriting recognition, or graphical keyboards for entering text with a
stylus. The key to the interface was a circular graphical target which had a central “bullseye”
surrounded by eight additional “cells”. Text was entered by making a selection from one of nine
different pie menus, each of which was invoked by depressing the stylus in one of the cells of the
target. This is illustrated in Figure 21.

Figure 21: The T-Cube Target

Each of the nine pie menus contained eight characters from which one could choose. Figure XX,
for example, shows selecting from the menu associated with the eastern-most cell of the target.
The full set of menus is illustrated in Figure 22. It is worth noting that, just as with a traditional
QWERTY keyboard, modifiers such as “shift” could be used to access more than 8x9=72
characters.

13.26 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Figure 22: The T-Cube Menus

The T-Cube approach was never used in a commercial product. Its main drawback was the amount
of time that it required in order to become proficient in it – to memorize the contents of all of the pie
menus. One attribute that it did have, however, which distinguishes it from the other shorthand
scripts that we will discuss, is that it was self revealing. That is, if you couldn’t remember the stroke
for a particular character, like with marking menus, you could find it by the graphical equivalent of
“hunt-and-peck,” namely, by exploring the menus.

Perhaps the first example using single stroke shorthand for entering alphanumeric characters into
computers is the Unistroke shorthand of Goldberg and Richardson (1993, 1993 video). The basic
Unistroke alphabet is shown in Figure 23.

Figure 23: The Unistroke Alphabet

In designing the Unistroke symbols, Goldberg’s prime consideration was speed of entry. Thus, the
most frequently used characters are the fastest to draw. However, in the “there is no free lunch”
department, this emphasis on articulation speed comes at the expense of learning speed. That is,
in many cases (consider the symbol for “a”, for example), any mnemonic value of the symbol is
sacrificed in the name of efficiency of execution. This is a classic trade-off. Despite some efforts
to facilitate the learning of Unistrokes, such as illustrated in Figure 24, they are still harder to learn
than they might be; however, once the initial learning is accomplished, from then on one
theoretically benefits from their efficiency. The assumption is that the long-term pay-off is well
worth the higher, but one time, up-front investment.

Marking Interfaces 13.27

Haptic Input 24 October, 2016 Buxton

Figure 24: Unistroke Mnemonics

The risk with this approach, however, is that this initial investment is sufficiently high as to
discourage adoption of the system in the first place. That this might be the case is suggested by
the commercial success of derivative shorthand, Graffiti, (illustrate in Figure 25). Graffiti went the
other way in the efficiency of learning versus articulation tradeoff. One can learn the basic alphabet
in a matter of minutes, but this is at the expense of optimal speed of entry, when compared to
Unistrokes. MacKenzie and Zhang (1997) provide a good discussion of how very intuitive Graffiti
is to learn. They show that with only one minute of training, accuracy of about 86% is obtained,
and after five minutes of practice, this goes up to 97% accuracy. Furthermore, retention after one
week is still 97%.

Figure 25: The Basic Graffiti alphabet

Finding the right balance in this learning vs. entry speed trade-off is extremely delicate. For
example, the advantage of learning Graffiti over Unistrokes is largely restricted to the basic
alphabet and digits (which, admittedly usually make up the majority of characters entered). When
it comes to special characters, such as punctuation and special symbols (as illustrated in Figure
26), the difference in ease of learning or retention is probably negligible. To emphasize this point,
the performance statistics given in MacKenzie and Zhang did not include special characters, so the
performance measures that do exist are based on only a subset of the full alphabet. [Note to self:
Incorporate discussion of Castellucci, S.J. & MacKenzie, I.S. (2008) here.]

13.28 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

 Figure 26: Graffiti: Special Characters

Contrast the intuitiveness of the special characters of Graffiti with that of the
main alphanumeric characters seen in the previous figure.

The extreme case on one side of the speed of learning vs speed of execution tradeoff is to simply
use conventional printing or handwriting, and forget trying to accelerate input at all. In so doing, of
course, we leave the domain of shorthand altogether. Close to this end of the spectrum is another
single stroke system, Allegro, for the Psion Series 5 PDA from Papyrus Software, illustrated in
Figure 27. Here, one gets slower entry speed than Unistrokes or Graffiti, but can achieve faster
entry than with conventional printing. The system requires some initial learning, since the
characters must be written in a particular way. The real benefit of Allegro may well be improved
recognition accuracy due to the constrained writing and single stroke alphabet, rather than
improved entry speed. However, there may be some benefit in entry speed, simply due to the time-
motion efficiency of the single stroke alphabet. As is too often the case, there is no empirical data
to help one make comparisons.

Figure 27: Allegro Notation

Allegro is a notation that uses a single stroke to enter each character. Each
character looks almost exactly the way it would in normal printing. However, in
Allegro, characters are entered with a single connected stroke. Because of
the greater complexity of the strokes, compared to Graffiti or Unistrokes,
Allegro will not be as fast to enter. However, it is possibly faster to learn than
Graffiti, but even this is not sure given the speed of learning Graffiti, and the
fact that Allegro characters must be entered in a special way. Taken
Together, Unistrokes, Graffiti, Allegro, and the recognition of conventional
printed characters provide the basis for an interesting study in the relative
design trade-offs among learning time, text entry speed, and recognition
accuracy.(courtesy of Papyrus Software)

The final single stroke writing system that we will look at is Quikwriting (Perlin, 1988). This is an
interesting design variation on the previous examples in that it is to them what cursive writing is to
printing. It could be called a cursive single stroke writing system. The claimed advantage of the

Marking Interfaces 13.29

Haptic Input 24 October, 2016 Buxton

approach comes mainly from the property that one need not lift the pen between characters, hence
its cursive nature.

As is illustrated in Figure 28, one enters characters using Quickwriting in one of four modes: lower-
case, upper-case, numeric, and punctuation, respectively. Notice that in each mode, the characters
are grouped among eight different regions. It is important to note that there is always an odd
number of characters in each of the eight regions.

Figure 28: The Quickwriting Templates

Quickwriting (Perlin, 1988) is a "cursive" single stroke writing system. In
entering characters, one is in 1 of 4 modes: lower-case, upper-case, numeric,
or punctuation, shown above. The characters in each mode are arranged in
one of 8 regions, with an odd number of characters in each region.

With Quickwriting, one always begins and ends the entry of characters from the same location: the
middle of the template. It is from this property that the cursive nature of the system derives, since
it means that the end position in writing character n is the start position in entering character n+1.

 "a" "m" "s" "q"

Figure 29: Entering Characters with Quickwriting

To enter a character, one moves from the centre of the template into the
region where the desired character resides. If the desired character is the
centre character in the region, it is entered by returning to the starting point,
as with "a". If the desired character is one step counter-clockwise from the
centre character, one moves one region counter-clockwise before returning to
the start, as with "m." If the desired character is one step clockwise from the
centre character, one moves one region clockwise before returning to the
start, as with "s." If the desired character is two steps counter-clockwise from
the centre character, one moves two regions counter-clockwise before
returning to the start, as with "q," and so on.

One enters characters by moving from the central start region of the template into the outer regions
and back. To select one of the characters in one of the eight regions, one moves from the start
into that region. The path that one follows back to the start point is what determines which of the
characters in that region is entered. Moving directly back to the start selects the centre character
in the region. In general, one selects the rest by moving as many regions clockwise or counter-

13.30 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

clockwise that the desired character is from the central character in the region. This is illustrated
by examples in Figure 29.

The technique for entering a sequence of Quickwriting characters cursively is shown in Figure 30.
Here one sees how the end of the entry of the "q" is continued to become the start of the entry of
the "u."

"qu"

Figure 30: Cursive Entry of a Character Sequence

Two single stroke characters can be entered in a cursive manner by having
the end of one become the start of the next. In this case the characters "qu"
are entered.

All of these single stroke notations are interesting for at least two reasons beyond the potential for
faster input. First, since each character is fully specified by a single stroke (or connected series of
strokes), there is no segmentation problem. Second, single stroke entry systems afford what can
be called heads up writing.

The segmentation problem can be seen in the example of entering a small circle followed by a
vertical stroke. With a single stroke character set, the system need not invest any energy trying to
figure out whether they are intended to signify “o l” or “d”. If a “d” was intended, the circle and
vertical stroke would have been connected. Hence, unlike printing conventional characters, there
is no need to print left to right, or within the confines of bounding boxes. Characters can even be
recognized when the shorthand symbols are written one on top of the other. This is what happens,
for example, using Graffiti on the PalmPilot electronic organizer, illustrated in Figure 31, for
example. With this device, shorthand symbols are entered one on top of the other at the bottom
part of the screen, and the resulting characters appear in conventional left-to-right order in the main
upper portion.

Figure 31: The US Robotics PalmPilot

The second attribute that makes single stroke notations interesting is that they permit heads up
writing. Because of the lack of segmentation problems, devices can be designed such that one
need not look at the “page,” or display, when entering data. Thus, unlike paper and pen

Marking Interfaces 13.31

Haptic Input 24 October, 2016 Buxton

technologies, one can visually attend to the whiteboard in a lecture, or the document which one is
transcribing, and still take legible notes. So, with careful design, we can achieve the handwriting
equivalent of touch-typing.

A design situation where this might be useful is in entering alphanumeric data into a wristwatch
based electronic organizer. Today, text entry to such devices is done using a micro-keyboard
attached to the watch, such as that illustrated in Figure XX. However, if the face of the watch is
touch sensitive, then one could employ a finger to enter data, using a single stroke notation like
Graffiti. The second watch illustrated in Figure XX is equipped with a touch screen and theoretically
could be adapted to recognize such characters “written” on the watch face.

Note that both the notation and the device must have the correct affordances to support heads up
writing. With our wristwatch example, the watch bezel would provide a tactile reference to constrain
the finger to the surface of the watch crystal, so heads up writing would work. However, with the
Palm Pilot, for example, this is not the case. Even though both might use Graffiti, with the Pilot,
one must be visually attentive to ensure that strokes are made in the appropriate part of the screen.
Otherwise, one might try to enter text on the numerical region, or in the data display/selection
region.

Finally, it is also important to note that the concept of heads up writing predates any of the
alphanumeric single stroke alphabets. In the 1980's, Casio made a watch, the AT-550, illustrated
in Figure 32, and a pocket organizer, the PF-8000, illustrated in Chapter 2, that supported this,
despite the fact that they did not utilize single stroke character entry. Single stroke alphabets make
it easier to implement, but if one is clever about how character segmentation is done, they are not
a prerequisite.

Casio DBC-150-1 Databank Casio AT-550 Finger Trace Calculator Watch

Figure 32: Two Wristwatch-Based Electronic Organizers

Illustrated are two wristwatches with built-in calculators from the same
company, Casio. With the one on the left, data is entered using the integrated
mini keyboard. The AT-550, shown on the right, has a touch screen mounted
over the its face. With this design, users were able to enter numbers by
tracing them on the face of the watch, using their fingers. The bezel of the
watch provided tactile boundaries on the drawing space. This approach
would lend itself quite well to single-stroke shorthand techniques, like Graffiti.
What is most impressive is that this watch was released in January of 1980. It
was way ahead of its time, and is a cousin to the Casio PF-8000 Databank,
illustrated in Chapter 2. (Left photo courtesy of Casio Inc.)

13.32 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

We have gone into a fair bit of detail in our discussion of single
stroke text entry systems. Part of the reason is simply that they
are interesting and illustrate a lot of ingenuity. Another is that
with the increasing adoption of small PDA-type appliances, this
type of technology is of growing practical relevance. Third, these
systems also provide a rich set of examples that can serve as
case studies and objects of comparison for the student.
Quickwriting claims to be "several times faster than Graffiti," for
example, yet there are no studies to support this. Should you
believe the anecdotal claims? How can we apply what we
learned in Chapter 7 about time-motion studies, for example, to
do some "back of the envelope" or even more formal comparative
estimates of performance? For a typical English sentence, is
there, in fact, any saved motion in writing cursively with
Quickwriting? Or, how would you determine where the balancing
point is between ease of learning vs the speed that one can
attain once learned? As we get further into this book, we can
start to apply what we have learned earlier to the problems that
we now encounter.

Finally, in the “there’s nothing new under the sun” department, it
is interesting to conclude our discussion of single stroke
shorthand with a brief historical notes. It turns out that this class
of shorthand is a rater old idea, invented around 63-58 BC by a
freed slave of Cicero, Marcus Tullius Tiro. His shorthand, notae
Tironianae, or Tironian notae, illustrated in Figure 34 was used
for about 1,000 years, among other things, to record the minutes
of the Roman Senate (Gaur, 1992).

But during the Middle Ages – perhaps because
scholarship in general fell into disrepute – shorthand
became associated with evil spirits and witchcraft, and
a person employing it was believed to be possessed by
the devil. (Panati, 1984, p. 81)

Given how devilishly difficult today’s computers are to use, one
could argue that little has changed since the 12th Century! Just
look at the comparison between Natew Tironianae and Graphitti
in Figure 33.

The real lesson in this example, however, is to recognize the
value of scholarship in design and innovation. Invention has as
much to do with understanding and drawing on the past as it
does creating the new, something that seems too often
forgotten.

Figure 33: Comparing Roman,
Graphitti and Notae Tironianae

Scripts

Beside each modern
alphabetic character appear
the Graffiti and Notae
Tironianae, symbols that
represent it (middle and right
columns, respectively). Notae
Tironianae, likely the first
singlestroke short-hand, was
developedin 63 BC by a freed
slave of Cicero. (From Buxton,
2005).

Marking Interfaces 13.33

Haptic Input 24 October, 2016 Buxton

Figure 34: Notae Tironianae,

Likely the first single-stroke short-hand, developed in 63 B.C. by a freed slave
of Cicero. (Illustration from Panati, 1984, p.81)

The User: Learning and Training
• tie in to speed (previous section)
• not self-revealing (in contrast to menus)
• size of symbol set
• exploit generic operations?
• design of symbol set
• like icons
• representative or not
• drawing speed vs mnemonic
• transfer: what do people do
• studies eg., IBM Wolf (1986), Rhyne & Wolf (1986), Wolf & Morrel-Samuels (1987) Wolf (1988),
Welbourne & Witrow (1988).
• include figures (such as p366 in HCI '88)

13.34 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Why the Competition? Typing on a Graphical Keyboard & Stroke Recognition

All of the examples in the previous section pitted tapping on a graphical keyboard against
approaches where strokes, which frequently involved leaving a trail of digital ink, were recognized
(often in combination with some kind of menu system). Both approaches have a legitimate place
and are worth studying. But ….

Speak about gesture keyboards:

 Buxton, W. & Kurtenbach, G. (2000). Graphical keyboard. US Patent 6,094,197, July 25,
2000.

 SHARK, ShapeWriter, etc. including precedent of: Nantais, T., Shein, F. & Treviaranus, J.
(1994). A Predictive Selection Technique for Single-Digit Typing With a Visual Keyboard.
IEEE Transactions on Rehabilitation Engineering, 2(3), 130-136.

 Isokoski, Poika (2004). Performance of Menu-Augmented Soft Keyboards, Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI’04), 423-430.

Form Filling

• boring, but common application
• well suited, since based on spatially distinct cells, or fields to be filled in

http://billbuxton.com/Patents/US6094197.pdf

Marking Interfaces 13.35

Haptic Input 24 October, 2016 Buxton

Document Creation, Editing, Annotation

• Nugent, W.R. & Buckland, L.F. (1967), Coleman (1969), Doster & Oed (1984), Welbourne &
Witrow (1988).
• figure/ground relationship
• deferring action, eg., mail
• GEdit

Selection Techniques
 • text/symbolic
 • all DM
 • point
 • drag through
 • circle/lasso
 • free motion (state 1) means noncontiguous regions easier

White Space
 • graphics & text are different
 • fill in
 • feedback, eg., dragging

Digital Ink and Document Morphology

Introduce AhHa! And PARC stuff on document recognition.

Radial Menus

Introduce here

Discuss Pixie and Don Hopkin’s work.

A recent example of using radial menus can be found in Google’s mobile phone. It has far more
resemblance to a phone keypad than a radial menu, but a radial menu it is. I

The radial menu is centred where you first touch, that is, the “5” always appears below where you
first touch the screen. If you then release your finger without moving, a “5” is entered. The way
that you enter a different digit is to move your finger in the direction of that digit, and then release
it. For example, if you slide up to the right and release, you enter a “3”, while sliding to the left
enters a “4”. The gesture recognizer, for that is what it is, can also distinguish long strokes from
short ones, so a short downward stroke followed by a release enters an “8”, while a downward
stroke followed by a release would result in a “0” being entered.

13.36 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

What is strange is that they do not support the full key-pad. For example, if they included long
SW and SE strokes, they could have also supported the “*” and “#” respectively.

Marking Menus

Introduce here

Brown University Sketch System

Introduce for 3D graphics

Shared Drawing

 • Minneman & Bly (1991).
 • Tang & Minneman (1991)
 - also relates to next chanpter: gestures
 • Wolf, Rhyne, et. al (1991)

The System: Trainability and Extensibility
• Trainability concerns individual differences
• Extensibility concerns tailorability
• Different but related issues
• user dependent/independent
• one does not imply the other: repertoire may be fixed.
• 1st trainable char rec: Teitelman (1964)
• besides training, there can be profile setting. e.g., Apple Newton: slect patterns that most
match your way of writing, but you must select from existing repertoire. Recognizer does not
learn from your script over time or training.

Transducer Technology

• generally stylus, but depends on bandwidth
• technology really affect performance
• issues of hardware discussed in: Leedham, Downton, Brooks & Newell, 1984 / Ward and Philips
(1987) / Kim & Tappert (1984)
• see Francik & Akagi (1989) for discussion of human-factors of designing the tablet and stylus of
the Wang Freestyle system.
• State 0 transitions key for delimiting
• delimit strokes

direct/indirect?
• write directly on display, on paper, on tablet?
• hybrid with keyboard?
• could interfere with touch screen on surface (eg., Dillon)

stylus:
• tip switch
• cordless?
• states
• tip switch

Tablet / writing surface
• Ward et al
• linearity, etc.

Marking Interfaces 13.37

Haptic Input 24 October, 2016 Buxton

Recognition Technology

Three types:
• template matching
• feature extraction
• connectionist
 • Martin, G.L. & Pitman, J.A. (1989)
 • Le Cun et al (1989). neural net on chip for numeral recognition. Trainable.
 • Pitman (1991)

• Defer: not an AI or signal processing book

• use of temporal cues?
• can help
• context of when a sign was specified can give important clues to interpretation of intent
• but if prerequisite, mitigates against deferred recognition

Implications on Underlying Software

• parallel scanning & semantic processing
• GEdit example

The Future?

 Pens that remember what you write, even when writing on paper. See Nabeshima et al
(1995).

Summary and Conclusions

... the technique that is possibly the most powerful and general of all, and that certainly presents
the most interesting issues to the programmer.
 Newman & Sproull 1973, p. 227

Could be finally reaching time: combination of MIPS, small displays and transducers. Currently 4
portables on market. Becoming more real (Thorell, 1987). But while never(?) use 2 pencils at a
time, we seldom write or draw without using our other hand. w/o that, not paper-like, and misses
full potential.

Line Driven Input Video Examples

1. Software Control at the Stroke of a Pen, Pencept Inc.
SIGGRAPH Video Review 18
Pencept is one of the better (and better known) manufacturers of character recognition
technology. This tape does not show them to best advantage. Their recognizer does not require
training, yet can recognize a wide range of printed characters. (On the other hand, it does not
permit training, so adding new characters cannot be done by the end user). The system consists
of software bundled with a tablet. On the one hand, this means that the display and input
surfaces are different. On the other hand, it supports dialogues that involve paper forms.
Characters can be printed anywhere on the tablet. They are not restricted to the confines of a
boxed grid, for example (although, you may do this if for some reason you want to).

13.38 Marking Interfaces

Haptic Input 24 October, 2016 Buxton

Besides recognizing the character printed, the size and position of the characters. This is
extremely valuable. For example, in a CAD program, it permits labels, their size and position to
all be specified in one chunk in a way natural to the task and user. Strangely, this feature has not
been exploited by any application that I am familiar with. Very strange. Seems like an
opportunity waiting to happen. What I'd like is to go one step further: to enable pressure, for
example, to determine wether the characters are to be bold, and slope to determine if italics are
intended.

2. Paper-Like Interface, IBM.
SIGGRAPH Video Review ?
This is perhaps the best demo of character and (limited) gesture recognition being shown today.
Note the use of position and size information in specifying the mathematical formula. Unlike the
Pencept system, the system uses direct input. That is, one writes directly on the display surface.

Also unlike the Pencept system, the system makes use of gesture, as well as character,
recognition. This is seen in the (seemingly compulsory) Lotus 123 example. This is a good tape,
and I believe that it defines new standards.

3. Freestyle. Wang Labs.
SIGGRAPH Video Review 45 (1989)
Despite the obnoxious nature of this tape, the system itself is an outstanding example of
economical but effective design. It is a good example of how much one can achieve with very
little. It works only on "dumb" bit-maps (actually, tiff files). One can marking, send and retrieve
documents with hand written/drawn annotation (and with voice). However, there is no recognition
capability. All actions associated with symbols (such as "delete" or "move" must be manually
executed. Furthermore, they can not be executed (even manually) on the document in which
they appear (which is, as we have stated, just a bit-mapped snap-shot of the actual document.

The power of Freestyle comes largely from two sources: (1) integration with the mail system, (2)
the strength of the figure-ground contrast of hand annotations on top of "typeset" material. It is
an example of careful design giving rise to a lot of benefit.

The problem with the Wang system is that it is so successful (in one way) that you think that it
has more smarts than it actually does. Consequently, this leads to additional expectations which
cannot be met. You get let down when you find that it can't do something that, by extension, you
would expect that it could. Further complicating things for Wang is that, by taking the approach
that they have, they have boxed themselves into a corner: there is no smooth evolutionary path
for their product to grow to a "smart" system.

Notes
 Note: this chapter is incomplete. Outline of contents is given.

integrate:
Hornbuckle, G.D. (1967). The computer graphics user/machine interface, IEEE Transactions on Human

Factors in Electronics, 8(1), 17 - 20.

Meyer, A. (1995). Pen computing: A technology overview and a vision. SIGCHI Bulletin, 27(3),
46-90.
Bob’s stuff from brown

Brown, C.M., 1988. Comparison of typing and handwriting in "two finger typists". Proceedings of
the 32nd Annual Meeting of the Human Factors Society, 381-385
 - note, may also be referenced in Text Entry in Chapter 2.

Marking Interfaces 13.39

Haptic Input 24 October, 2016 Buxton

http://www.amug.org/amug/sigs/newton/nanug/PenReport/NewPenCom.html

Include stuff like Teddy 2D sketch -> 3D geometry.
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/teddy/teddy/teddy.html

Sacks 3Draw @ MIT

Baudel Ligne Claire

P. Brandl, C. Forlines, D. Wigdor, M. Haller, and C. Shen, 2008.
"Combining and measuring the benefits of bimanual pen and direct-touch interaction on
horizontal interfaces," in AVI08: Proceedings of the working conference on Advanced Visual
Interfaces, New York, NY, USA, 2008, pp. 154-161.

Wobbrock, J.O., Myers, B.A. & Kembel, J.A. (2003) EdgeWrite: A stylus-based text entry method designed

for high accuracy and stability of motion. Proceedings of the 16th Annual ACM Symposium on User
Interface Technology (UIST'03), 61-70.

http://www.amug.org/amug/sigs/newton/nanug/PenReport/NewPenCom.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/teddy/teddy/teddy.html
http://mi-lab.org/wp-content/blogs.dir/1/files/publications2008/PenAndTouch.pdf
http://mi-lab.org/wp-content/blogs.dir/1/files/publications2008/PenAndTouch.pdf

