
1 | P a g e

Too Hidden Features of the Windows CE

Graphical Keyboard

Bill Buxton

Microsoft Research

One Microsoft Way

Redmond, WA, 98052

bill.buxton@microsoft.com

Unpublished Manuscript

First Draft: April 15, 2013

Current Draft: July 20, 2016

The Windows CE graphical keyboard had some features that very few people knew existed,

much less used. However, the increased use of graphical keyboards due to the popularity of

slates and modern mobile devices makes these features worthy of reexamination. Underlying

what follows is the belief that their lack of adoption had more to do with the implementation

of the ideas, than with the quality of the ideas themselves. Overall, the ideas enabled the

user to access more characters from the basic keyboard, through the use of short-hand

strokes, than would otherwise be possible without increasing the number of keys.

Introduction
The Windows CE keyboard had a few very interesting features1. Using a technique introduced by

Buxton and Kurtenbach [1] , the default graphical keyboard enabled one to use simple single-

stroke gestures as substitutes for four frequently used keys, as follows:

 SHIFT: make an upward stroke starting on the desired character’s key, and the upper-case

character associated with that key would be entered, rather than the lower-case character

that would result if the same key were tapped. Using this stroke saves having to make a

separate tap on the SHIFT key.

 SPACE: a stroke to the right, initiated anywhere on the keyboard would enter a space.

Using this stroke is faster than tapping on the graphical SPACE bar.

 BACKSPACE: a stroke to the left, initiated anywhere on the keyboard, would enter

BACKSPACE.

1 The discussion and images used in this note are from my vintage 2007 HTC Touch mobile phone, running
Windows Mobile Professional, which was built upon Windows CE OS 5.2.

2 | P a g e

 ENTER: a stroke down, initiated anywhere on the keyboard, would have the same effect as

tapping on the ENTER key.

Because these are four of the most frequently used keys, these single-stroke short-hand

accelerators had the potential to significantly increase text entry speed – especially since the

screens on these devices did not support multi-touch.

However, almost nobody knew about these accelerators, much less used them. Little wonder: on

the device that I used, there was no mention of them whatsoever in the 154 page user manual that

came with the device. There was nothing about this capability in the 60 page Quick Start guide.

And, there was nothing in the keyboard UI, or the typical user’s previous experience that would

lead them to discover this capability. In short, the time spent implementing this capability was a

complete waste of developers’ time and the company’s money. That is too bad, since the

capability had real potential value, the source of which I have only mentioned a part of.

The Windows CE / Pocket PC graphical keyboard also included one other property that was,

likewise, generally undocumented, unknown, undiscoverable, and perhaps most interestingly,

counter-intuitive: there was an option that enabled the four keys that had short-hand stroke

alternatives to be eliminated from the keyboard.

One might wonder why eliminating four of the most frequently used keys might be considered a

good idea. The start of an answer might lie in three additional questions:

1. Given that it is not possible to get the full character set on the small default graphical

keyboard of a mobile device, and there is a fairly high cost in accessing the missing

characters from a secondary keyboard, does it not make sense to consider sacrificing some

learned technique for a new one, as this can be justified in terms of transaction cost?

2. If there is a redundant way to do something, one traditional and the other new, can there

be a benefit in supporting the new one, if its efficiency is sufficiently high and initial skill

acquisition sufficiently low?

3. If you choose to keep the more efficient stroke-shorthand, and eliminate the redundant

traditional keys, how can you best utilize the keyboard real-estate that is freed up?

From my perspective, the answers to each of these three questions are obvious, and land us on a

spot where dropping the redundant keys enables missing characters typically found on a full

QWERTY keyboard to be added to the main graphical keyboard.

In the next section, we will see the specifics of how this was done in the old Windows CE / Pocket

PC system.

3 | P a g e

The Windows CE / Pocket PC Keyboard

This image shows the various options for text entry.

Block Recognizer is essentially just another name for

the Graffiti uni-stroke short-hand found on the Palm

Pilot, for example. Letter Recognizer is for printed

character recognition, while Transcriber does cursive

script recognition. The currently selected technique is

indicated by the black dot to the left of the list. Here,

the Keyboard is selected. Symbol Pad supports the

input of special symbols. The Options item at the top

opens a panel that lets one set options for the

currently selected input technique. The next three

images are of the options menu for the keyboard

technique.

This panel shows the result of selecting Large Keys

option. The result is reflected by the keyboard layout

in the lower half of the screen. The option enables

the user to choose larger easier-to-tap keys at the

expense of having fewer keys available. The penalty

is that one must resort to secondary keyboards in

order to access missing characters.

Notice how non-alphabetic printing characters are

shifted down one row from where they appear on the

traditional QWERTY keyboard.

Numbers, symbols, and additional accents are

accessed from the [123] Key at the left of the top row,

and accents by the Accent Key, second from the left

key in the bottom row. The keyboard has 4 rows of

keys, and each row has space for 12 keys (note some

keys, such as Shift, Tab, CAP, etc. are wider than

others, so not all rows have 12 keys.)

Figure 1: Keyboard Options

Figure 2: Large Keys

4 | P a g e

The Upper Case character set of the Large Keys

keyboard seen in Figure 2. The alphabetic characters

are obvious. Note that because the key-caps do not

label both the upper and lower case characters

associated with each key, the discoverability of the

upper case punctuation and special characters is

poor..

This is the secondary keyboard that is accessed by

tapping on the [123] Key on the QWERTY

keyboards. Few of the characters on this keyboard

can be directly accessed on the Large Keys

keyboard shown in Figure 2 and Figure 3.

 This is the secondary keyboard that is accessed by

tapping on the Accents Key on the QWERTY

Keyboards. None of the characters on this

keyboard can be directly accessed on the Large

Keys keyboard shown in Figure 2 andFigure 3.

The Small Keys option is selected, and this is reflected

in the keyboard in the lower half of the screen. This

option enables the user to choose the benefit of

having more keys, and therefore more characters,

available on the main keyboard, without increasing

the keyboard’s overall screen real-estate. However

this comes at the expense of keys being smaller and

therefore harder to tap.

Due to the smaller key size, there are now 5 rows of

keys, rather than 4. Each row has space for 14 normal

keys rather than 12. Character placements for upper

and lower case characters, (see Figure 7), are

consistent with the standard QWERTY layout. The

[123] key is still needed, since all of the characters

from this secondary keyboard will not fit on the main

one, but the need to go to it will be significantly

reduced. Note that one still has need of the

secondary accent keyboard

Figure 4: The [123] Secondary Keyboard

Figure 3: Upper-Case Characters of Large Keys Kbd

Figure 5: The Accent Secondary Keyboard

Figure 6: The Small Keys Keyboard

5 | P a g e

The Upper Case character set of the Large Keys

keyboard seen in Figure 6. Notice that the [123] Key is

still needed, even though 40 of the 46 characters from

the [123] secondary keyboard (Figure 4) are now

included in either the upper or lower case of the Small

Keys keyboard.

In this panel we see the effect of selecting the poorly

named Use gestures for the following keys option. I say

poorly named since, as already mentioned, the four

strokes can always be used as an alternative for SPACE,

SHIFT, BS and ENTER keys.

Hence, the graphical versions of those keys are

redundant. Therefore, the graphical representation of all

four keys associated with the stroke gestures are

removed. The space freed up is then populated with new

keys which provide access to characters from the [123]

Keyboard. Significant improvement in performance is

achieved by greatly reducing the need to go to

secondary keyboards, since numbers, upper and lower

case alphabetic characters, and all but 14 of the 46 [123]

Keyboard characters are accessible from this one

keyboard.

Note this is accomplished while preserving the easier to

access larger keys. Furthermore, discoverability is

improved compared to the Small Keys keyboard

(compare Figure 8 with Figure 6 + Figure 7), since –

besides offering larger targets - the larger keys also

afford space for the key-cap labels to include the

associated upper and lower case character for each key,

while still maintaining acceptable legibility.

Figure 7: Small Keys Keyboard Upper Case

Figure 8: Large Key Keyboard with SHIFT,
SPACE, BACKSPACE & ENTER Removed

6 | P a g e

Switching Keyboards

Because switching keyboards to access a desired character is expensive, especially if one does not

know which keyboard to find it on, the rationale for much of this work assumes that it is preferable

to have as many of the overall character set, ideally all, on the default main keyboard. Of course,

there are limits: to fit all characters, key size typically becomes too small to easily read key-caps,

and even when they can be read, hitting them with the finger, or even a stylus, can be problematic.

The former can be partially mitigated for those familiar with the standard QWERTY layout, if that

layout is preserved as much as possible in the graphical keyboard. But ultimately, typing

performance will be a function of three key factors:

 Search - finding the desired character

 Key-strokes

 Target Size.

Earlier, we have seen that there are 3 primary graphical keyboards available on the Windows CE /

Pocket PC device. Where these three options vary is how many characters from the overall

character set can be accessed from the default keyboard

1. Large Keys: A reduced version of the QWERTY layout, with many non-alphabetic keys

removed so that keys can be larger, and therefore easier to tap.

a. Search: Mixed. Since there are fewer keys, those on the default keyboard are easy

to find. Non alphabetic characters on the default keyboard are at, or close to, their

normal position. Conversely, with fewer keys, there is all the more need to search

other keyboards to find characters not on the default keyboard.

b. Key-strokes:: Poor. Navigation to other keyboards is more frequent than the other

two options, Note: This is especially true, since besides the [123], and ACCENT

keyboards, there is a third secondary keyboard, the Upper Case keyboard, accessed

by the SHIFT key – which comes at the same cost as the other two.

c. Target Size: Good. All other things being equal, the larger the target within a given

keyboard footprint, the faster the selection.

2. Small Keys: A close approximation to the standard QWERTY layout, which comes at the cost

of smaller keys.

a. Search: Better. Not only are more characters on the default keyboard, their location

in both upper and lower case is consistent with the standard QWERTY keyboard.

b. Key-strokes:: Medium. Navigation to other keyboards reduced, compared to the

Large Keys option, with most switching being to the upper-case (SHIFT) keyboard.

Note: This is especially true, since, as with the Large Keys keyboard, there is also the

third, Upper Case, secondary keyboard, with the same additional cost.

c. Target Size: Poor. Compared to the other two options, this option has keys with the

smallest target size.

3. Large Keys with SPACE, BACKSPACE, SHIFT & ENTER removed: The screen real-estate

freed up is filled with numbers and punctuation.

a. Search: Good. Nearly the full character set is on the default keyboard, and

characters are in their normal QWERTY keyboard positions.

7 | P a g e

b. Key-strokes:: Good. Navigation to other keyboards is by far the least, compared to

the other two options, especially taking into account that the need for a distinct

upper and lower case keyboard is eliminated. This assumes that the difference in

cost of a “tap” vs a “stroke” is negligible.

c. Target Size: Good. All other things being equal, the larger the target within a given

keyboard footprint, the faster the selection

Details: In all three cases, there are some characters that can still only be accessed via the [123]

secondary keyboard. Since switching between keyboards comes at a high transaction cost, the

number of keys, and which keys, require the [123] keyboard, is important to understand in order to

better appreciate the trade-offs in choosing amongst the three keyboard designs. In the three

figures below, the red lines delineate the boundaries between keys that accessible on both

keyboards (these are greyed out), and keys that require the [123] secondary keyboard to be

accessed. Each image corresponds to one of the 3 keyboard types listed above.

The Large Keys keyboard will typically require the

most switching back-and-forth to the [123]

secondary keyboard. There are only 8 characters

common to both: comma, period, colon, forward-

slash, Tab, Space, Backspace, & Enter. Hence, there

is a potentially high price for the benefit of the

larger keys on the main keyboard.

The Small Keys keyboard will require the least

switching back-and-forth to the [123] secondary

keyboard. There are only the 6 characters indicated

in Figure 10 for which this is required. All others are

accessible in either the lower or upper case of the

main keyboard. In this regard, the additional cost

of the small keys may be worthwhile, depending on

what is being typed.

While better than the basic Large Keys keyboard,

the version with the SPACE, SHIFT, BACKSPACE and

ENTER keys removed still requires more visits to

the [123] menu than the Small Keys kbd. However,

this difference will be significantly more than

compensated for by avoiding the far more

frequent switching to the Upper Case keyboard.

Figure 9: Keys not on Large Keys Kbd

Figure 11: Keys not on Modified Large Keys Kbd

Figure 10: Keys not on Small Keys Kbd

8 | P a g e

There are only 14 keys for which the user needs to go to the [123] secondary keyboard, but for

most, these are not likely highly used. So, while there will be more overhead in switching to the

[123] keyboard than with the Small Keys keyboard, the use of shorthand strokes for four of the

most commonly used keys, the larger key size, and labeling both upper and lower case characters

on the key-caps, all combine to possibly more than out-weigh the otherwise advantages of the

Small Keys keyboard.

Caveats, Comments and Observations
 In the above, I have tried to be careful in qualifying what I say through the judicious use of words

such as, “generally”, “might”, “likely” etc. The point is, there are a lot of factors besides keyboard

layout that affect performance, such as:

 Selection Tool: the keyboards discussed were primarily designed to be operated using a

stylus rather than finger.

 Small Size: the screen on the device that I used was 4.5 cm x 5.5 cm, which means that the

maximum width of the keyboard in portrait mode can only be about 80% of my current

mobile. This is enough of a difference to impact design options, such as legibility of key-

cap labels, and the ability to include both upper and lower case labels on the keys.

 Resistive Film Touch: the keyboards discussed were designed for use on a resistive touch

screen, rather than capacitive. While the relatively small key size, relative to those on most

modern phone touch screens, remember that with resistive screens (unlike capacitive), one

can tap with one’s finger-nail, which is a finger-based pointer that can be much more

accurate than the pad of a finger-tip.

 Mono-Touch: the keyboards discussed were also designed for use with a mono-touch

sensor which must also be factored into considering the applicability of any conclusions to

the design of today’s mobile platforms.

Conclusions and Summary
While reviews of the literature are generally expected in the academic literature, reviews of

commercial practice are much less common. As a result, much innovation is too little known,

and/or lost from our collective consciousness. For that reason, reasonably detailed case studies are

– to my mind – valuable. I believe it is fair to say – but admittedly without data beyond informal

conversational surveys coupled with personal use at the time and since – most people who used

the products employing the interface discussed had no idea that the stroke-shorthand existed,

much less used it. Furthermore, even those who knew about the strokes, knew that the keys made

redundant by them could be removed from the keyboard – thereby freeing up space for characters

that would otherwise be missing from the main keyboard.

Waste not, want not …

On looking at the interface and the documentation, there is little wonder that the this work is/was

so little known or used. The strokes are not discussed in the documentation at all, and the only

indication that they exist is buried in the obscure Options menu, with no explanation. Likewise, the

9 | P a g e

ability to remove the redundant keys is undocumented, and the labeling of the control that

enabled is obscure at best, and misleading at worst.

So, one of the take-away lessons from this study has to do with the discoverability of features:

If you add capability that is not discoverable, and therefore unlikely to be used, then how can

you justify the expense of the resources of designing, implementing, testing, and supporting

the feature in the first place?

The second take-away, which is a kind of corollary, is this:

The more valuable the undiscoverable feature, the bigger the waste, and the bigger the loss

to user and any other stake holder.

The importance of dual-case labeling of key-caps

In terms of practical detailed lessons, the one thing that struck me the most in revisiting this

implementation was the impact of key-cap labeling:

 Upper-Case vs Secondary Keyboard: From one perspective, the upper-case keyboard is

just as much a secondary keyboard, relative to the lower-case keyboard, as is the special

character [123] secondary keyboard. However, due to the acquired familiarity, coupled with

the exact positional matching of keys, cognitively, the two are worlds apart. One take away

is that – in general - starting from the default lower case mode, accessing a character from

the upper case is significantly more efficient than accessing it from the secondary [123]

keyboard.

 Dual-Case: The previous point motivates the view that all keys, not just alphabetic ones,

should be dual case (with the obvious exceptions of Space, Backspace, …).

 Discoverability: if upper case non-alphabetic characters are not labeled in lower case mode,

users will tend to go to the secondary [123] keyboard to access them, rather than the

otherwise more efficiently access from the upper case.

 Non-Standard Character Location: With small graphical keyboards, it is almost inevitable

that some characters do not appear where they normally would on a standard QWERTY

keyboard. Such characters accessed in the upper case mode are particularly susceptible to

not being discovered if dual-case key-cap labeling is not supported.

 Dual-Case Key-Cap Labels: The previous points reinforce the need for dual-case labeling.

The extended version of Large Keys, shown in Figure 8 makes a pretty good case that it is

also possible. That is, compared to most of today’s mobile devices, one can render legible

dual-case key-cap labels even on relatively small graphical key-caps.

 Alphabetic vs Non-Alphabetic Characters: Just for completeness, my comments about

dual-case labeling apply only to non-alphabetic characters. This keeps the visual clutter to a

minimum and makes scanning the keyboard simpler.

10 | P a g e

Considering old trade-offs in terms of today’s technologies

It is interesting to make two passes at analyzing the pros and cons of the three basic designs that

we have covered, above: one in terms of then and the other in terms of now. Given its close

consistency to the standard QWERTY layout, and the fact that it required the least amount of travel

to the secondary [123] keyboard, the Small Keys layout might likely have been the preferred option

at the time. Experience with physical keyboards would enable users to predict where characters

would be found, even without dual-case labeling (but poor pity the hunt-and-peck typist), and the

small key-caps were manageable when using a stylus. Furthermore, the ability to also employ the

stroke-shorthand (if you discovered it) made things even better.

On the other hand, with capacitive touch screens – which require fat fingers to operate – the larger

keys of the modified Large Keys keyboard may prove a better option (at least amongst these three

candidates). However, dual-case key-cap labeling likely becomes more important with this option.

Lack of Data, Lack of Experience and the Value of History

It is somewhat surprising to many that:

 these techniques were shipping as early as about 2005;

 that few know about them, much less that they shipped at all;

 that despite the size of the literature on graphical keyboards, there is little or no

experimental data on the techniques used here;

On the other hand, once one is aware of the existence of the resulting products, things like E-Bay

become one of the most cost-effective prototyping tools. That is, for about the cost of a coffee or

two, one can get a product quality working device that can serve as a communications tool, as well

as prototype adequate to gain valuable personal experience that can feed into future designs.

But at the same time, one would still like more: data. A knowledge of history, creativity and

experience are all critical ingredients for successful innovation. However, while essential, they are

not sufficient. To optimize innovation, one also needs models and theory. My hope here is that

out of such case studies might emerge better insights as to where and how to direct our limited

research resources.

References

[1] W. A. S. Buxton and G. P. Kurtenbach.United States Patent 6,094,197, 17 May 1995.

