
Citation: Buxton, W. (1986). Chunking and phrasing and the design of human-computer dialogues, Proceedings of
the IFIP World Computer Congress, Dublin, Ireland, 475-480.1

CHUNKING AND PHRASING AND THE DESIGN
OF HUMAN-COMPUTER DIALOGUES

William Buxton

Computer Systems Research Institute

University of Toronto
Toronto, Ontario

Canada, M5S 1A4
(416)-978-6320

buxton.dgp.toronto.edu2

INTRODUCTION
It is no secret that the user interface of most computer systems could be improved. Systems are
often intimidating, prone to error, and require a high investment in effort before productive work
can be undertaken. A desire to make systems easier to use is a good starting point, but we can't
get far without some theory of how to do so.

"Easier to use" is easy to say, but it suggests little about how to reduce errors and frustration and
promote faster learning. To make some headway in this direction, we might best reformulate the
problem as:

 How can we accelerate the process whereby novices begin to perform like experts?

Underlying this formulation is an assumption that there is a qualitative difference between how
experts and novices achieve their goals. This assumption is supported by much of the recent
literature in problem solving and the acquisition of cognitive skills (e.g., Anderson, 1980).

Experts and novices differ in the coarseness of granularity with which they view the constituent
elements of a problem or task. Novices are attentive to low-level details. For example,
operational details such as finding a desired character on the keyboard or remembering the name
of a command involve problem solving. The result is that valuable cognitive resources are

1 Note: this version has minor corrections and changes in wording from the published version. This is for increased
clarity. The substance of the paper remains unchanged.
2 Current email: bill@billbuxton.com

mailto:bill@billbuxton.com

diverted from the central problem at hand.

With experts, these low-level details can be performed automatically. Hence, the size of the
chunks of the problem to which they are attentive are much larger. The skills which permit these
tasks to be performed automatically, however, must be highly learned, usually through repetition
(Newell & Rosenbloom, 1980). The acquisition of skills, therefore, can be characterized by
developing an ability to perform ever-larger chunks of a problem automatically.

We can now return to our reformulation of the problem at hand, "How can we accelerate the
process whereby novices begin to perform like experts?". Our premise is that there should be as
close a match as possible between the structure of how we think about problems and the
language or representation which we use in solving them. In what follows we argue that this can
be achieved by engineering the pragmatics of the human-computer dialogue (Buxton, 1983) to
reinforce the chunking that we believe would underly the performance of an expert working in
the domain. Another way of stating this is that the dialogue structure, especially the pragmatics,
can be engineered so as to maximize compatibility (Fitts & Seeger, 1953; John, Rosenbloom &
Newell, 1985) with the problem domain.

SYNTAX: TWO APPROACHES
The design of the syntax has a major effect on the quality of the user interface of an interactive
system. It affects learnability, the frequency and nature of user errors, the retention of skills (as
with non-regular users) and the speed of task performance. A major problem for users is the
cognitive load imposed by remembering the tokens of a command and their order (see, for
example, Barnard, Hammond, Mortan, Long & Clark, 1981).

One approach that designers have taken to avoid such problems is to limit the number of
arguments to a command. The user interface of the Macintosh computer, for example, limits
operators to having only one explicit argument. This causes problems, however, for operations
such as move which require both a direct and indirect object. To get around this, applications
such as MacWrite (Apple, 1984) replace the single command move with two lower-level
commands cut and paste. While the new primitives have a simpler syntax, the user's mental
model must be restructured to map the concept move onto these two new primitives. Rather than
simplifying the user interface, therefore, it is possible that the single-operand-per-verb strategy
simply redistributes the cognitive loading.

An alternative design strategy exists. If move, for example, is the primitive that most closely
corresponds to the user's model, then the design problem is to use it while minimizing the burden
of remembering the arguments and their ordering. Proof-reader's symbols offer one approach to
doing so. An example is shown in Figure 1.

Figure 1: Proof-Reader's Symbol Specifying "Move."

Contrast the directness of this with the "cut-and-paste" strategy utilized by MacWrite (Apple,
1984).

There are at least three points worth noting about this example, especially in contrast with the
"cut-and-paste" strategy for specifying the same operation:

• The entire transaction, verb, direct object, and indirect object are all specified in a single
gesture;

• There will never be an error in syntax since the ordering is implicit in the gesture;
• The operation is specified using existing skills and does not require restructuring of

existing mental models.

PHRASING AND GESTURE
We can think about the components of the move command in the previous example as being
woven together by a thread of continuity similar to that binds together a musical phrase. The
"statement" is initiated in a state of neutrality, is articulated by a continuous gesture, and upon
closure, returns to neutral state where another phrase can be introduced by either party. As in
music, the phrase is characterized by tension (in this case muscular) and the neutral state
delimiting the start and finish by relaxation.

One of our main arguments is that we can use tension and closure to develop a phrase structure
to our human-computer dialogues which reinforces the chunking that we are trying to establish.

In the "body-language" of haptic input, kinesthetics and muscular tension are the raw materials
of establishing a phrase structure. With the gesture comes heightened arousal and performance
(Yerkes & Dodson, 1908), and in the periods of relaxation, a clear indication that it is alright to
be interrupted or move on to the next step.

 Figure 2: Yerkes-Dodson law relating performance to arousal (From Kantowitz & Sorkin,

1983, p. 606)

COMPOUND TASKS
Problems that we saw previously in the syntax of a single command also appear at another level
of the human-computer dialogue. In actual applications, many of the transactions which we
perform consist of compound tasks. Selecting an electrical component and positioning it in a
circuit board layout would be an example of a selection/positioning task (Buxton, 1982).
Similarly, identifying a word by finding it in a document and then selecting it would be an
example of a navigation/selection task (Buxton & Myers, 1986). In many such cases, we would
argue that the user models the compound task as a single entity. In such cases, having to address
the sub-tasks independently may result in an additional burden comparable to using cut and paste
instead of move. Furthermore, we claim that the use of phrasing through kinesthetic gesture can
be used to overcome this problem.

Pop-up menus provide a good example to illustrate our point. In general, one would consider
that making a selection from a pop-up menu as being a single task. However, on closer
examination, it is seen to consist of three sub-tasks:

• Invoke the menu: by depressing the mouse button;
• Navigate to selection: by moving mouse while button is depressed;
• Make selection and return: release mouse button.

In this case, the "glue" that ties the three sub-tasks together is the tension of holding the mouse
button down throughout the transaction. By designing the dialogue in this way, errors of syntax
and mode errors are virtually impossible to make since the concluding action (articulated by the
mouse button being released) is the unique and natural consequence to the initial action
(depressing the mouse button). Furthermore, the tension of the finger holding down the button
gives constant feedback that we are in a temporary state, or mode. (There is a slight irony to this,
since it is precisely in so-called "modeless" interfaces that pop-up menus are most commonly
found.)

PHRASING AND COGNITIVE SKILLS
In their 1983 study, Card, Moran and Newell discussed how experts collapsed low-level text
editing tasks into cognitive "subroutines" that they termed "routine cognitive skills". Anderson
(1982) describes the acquisition of such skills as being based upon the compilation and
proceduralization of knowledge about the underlying sub-tasks. We believe that phrasing can be
used to organize these sub-tasks to accelerate this process.

PRAGMATICS AND THE COMPONENTS OF INPUT
If Card, Moran and Newell's routine cognitive skills are compilations of lower-level primitives,
one could try to determine the basic building blocks. One possible answer comes from Foley,
Wallace and Chan (1984). They tried to characterize human input to computer systems from the
user's perspective. In so doing, they came up with six basic primitives:

• Select: Indicate an item in 1, 2, or 3D;
• Position: Place an item in 1, 2, or 3D;
• Orient: Rotate an item in 1, 2, or 3D;
• Path: Specify a path, such as in inking in a paint program;
• Quantify: Specify a numerical value;
• Text: Enter text, as in word processing

On closer examination, however, we see that these primitives are not necessarily all at the same
level. Let us use the position primitive as an example.

If we use a mouse or a tablet, positioning an object in 2D can be viewed as a single task.
However, the moment that we change transducers and use a QWERTY keyboard, specifying the
same coordinates involves two primitives, namely quantify X and quantify Y.

Figure 3. Position as an Aggregate of 2 Quantify Tasks

We see from this example that even Foley, Wallace and Chan's six primitives have a deep
structure. Whether the sub-tasks are consciously perceived, however, is very much influenced by
the gesture (and capturing transducer) used. When appropriate, a single gesture (pointing) can be
used to articulate a single concept (position).

We can build further upon the previous example. Let us look at a simple system for transcribing
common music notation (Buxton, Sniderman, Reeves, Patel & Baecker, 1979). Notes are

entered using a simple short-hand notation. Using a stylus and digitizing tablet, the user points at
where a note is to appear and enters one of the shorthand symbols shown in Figure 4.

 Figure 4. Short-Hand Symbols for Transcribing Musical Notation.

(From Buxton, Sniderman, Reeves, Patel & Baecker, 1979.)

Figure 5. Entering a 16th Note Using a Single Gesture.

Using this system to enter a 16th note is shown in Figure 5.

The underlying structure of adding notes using this technique is shown in Figure 6. We see that
adding a note, like positioning, is actually made up of a number of sub-tasks. However, when
implemented as described, these sub-tasks all collapse into the single primitive add note.

Figure 6. Task Hierarchy in Add Note Task

GRAMMARS, PRAGMATICS AND COMPLEXITY
If the sub-tasks of a higher-level concept like "Add Note" can collapse into a single gesture, is
there any model that helps predict the savings? One approach, based on recent studies, attempts
to obtain a measure of the difficulty of a user interface by analyzing its underlying grammar.
This work was pioneered by Reisner (1981), and further developed by Green & Payne (1984)
and Green, Payne, Gilmore and Mepham (1984).

In her original work, Reisner developed a set of heuristics which she used to analyze the
grammar of the interaction language of a particular system. From this analysis she would derive
a value which gave a measure of the system's learnability and proneness to error. The heuristics
that she used were based upon:

• Number of productions
• Number of terminals
• Length of productions

We can apply such an analysis to the grammar of our Add Note primitive, shown below (non-
terminals start with upper case, terminals start with lower case):

AddNote := quantifyDuration PositionPitchTime
 PositionPitchTime :=quantifyPitch quantifyStartTime

We can apply an approximation of Reisner's heuristics on this grammar in which we assume that
the weight of each production and each terminal is 1 unit. Since we have two productions and
three terminals, the total weight is therefore 5.

However, if we use the character recognition technique described above, we would argue (from
experience) that the real weight of the entire transaction is closer to the weight contributed by a
single terminal, namely weight 1. Our explanation for this is that the user need not be attentive
to any of the operational details of the component sub-tasks. The complete concept can be
expressed in a single fluid compatible gesture.

GESTURE AND PRAGMATICS
The notion of physical gesture is central to virtually all of the examples discussed. In each case,
the key to using a particular gesture is having the appropriate transducer. Conversely, the main
limiting factor, restricting the range of available gestures in our repertoire is the sorry state of
current practice in input. The lack of pressure sensitive devices (such as mouse buttons to
control line thickness), foot controls, and two-handed input are just a few obvious examples.

To this point all of our examples have involved sequential bindings. However, as changing gears
with a manual transmission illustrates, the binding among related tasks can be in parallel and
across limbs. This is demonstrated in a recent study by Buxton & Myers (1986).

CONCLUSIONS
We have argued that user interface pragmatics can be designed to accelerate the acquisition of
expert operational skills. The key is gesture-based phrasing to chunk the dialogue into units
meaningful to the application. Any concept or transaction that can be described in a single word
or phrase should be able to be articulated by a single gesture. This desired one-to-one
correspondence between concept and gesture leads towards interfaces which are more
compatible with the user's model.

The work described is based on practice and experience rather than formal experimentation. It is
preliminary, and a great deal of research remains to be done. However, the examples discussed
are sufficiently persuasive to warrant an examination of current design practice.

REFERENCES/BIBLIOGRAPHY
Anderson, J.R. (Ed.) (1980). Cognitive Skills and their Acquisition, Hillsdale, N.J.: Lawrence Erlbaum &

Associates.
Anderson, J.R. (1982). Acquisition of Cognitive Skill, Psychological Review, 89(4), 369-406.
Apple (1984), MacWrite User's Manual, Apple Computer Inc., Cupertino, CA.
Barnard, P.J., Hammond, N.V., Mortan, J., Long, J.B. & Clark, I.A. (1981). Consistency and

Compatibility in Human-Computer Dialogue, IJMMS, 15(1), 87-134.
Buxton, W. (1982). An Informal Study of Selection-Positioning Tasks, Proceedings of Graphics

Interface '82, 323-328.
Buxton, W. (1983), Lexical and Pragmatic Considerations of Input Structure, Computer Graphics, 17(1),

31-37.
Buxton, W. & Myers, B. (1986). A Study in Two-Handed Input, Proceedings of CHI '86, 321-326.
Buxton, W., Sniderman, R., Reeves, W., Patel, S. & Baecker, R. (1979). The Evolution of the SSSP

Score Editing Tools. Computer Music Journal, 3(4), 14-25.
Card, S., Moran, T. & Newell, A. (1983), The Psychology of Human-Computer Interaction, Hillsdale,

N.J.: Lawrence Erlbaum Associates.
Fitts, P.M. & Seeger, C.M. (1953), S-R compatibility: Spatial characteristics of stimulus and response

codes. Journal of Experimental Psychology, 46, 199-210.
Foley, J., Wallace, V.L. & Chan, P. (1984), The Human Factors of Computer Graphics Interaction

Techniques, IEEE CG&A, 4(11), 13-48.
Green, T.R.G. & Payne, S.J. (1984). Organization and Learnability in Computer Languages, IJMMS,

21(1), 7-18.
Green, T.R.G., Payne, S.J., Gilmore, D.J. & Mepham, M. (1984). Predicting Expert Slips, Proceedings

of Interact '84, Vol. 1, 92-98.
John, Rosenbloom, P.S. & Newell, A. (1985). A Theory of Stimulus-Response Compatibility Applied to

Human-Computer Interaction, Proceedings of CHI'85, 213-220.
Kantowitz, B.H. & Sorkin, R.D. (1983). Human Factors: Understanding People-System Relationships,

New York: John Wiley & Sons.
Newell, A. & Rosenbloom, P.S. (1980). Mechanisms of Skill Acquisition and the Law of Practice, in

Anderson, J.R. (1980). op cit.
Reisner, P. (1981). Formal Grammar and Human Factors Design of an Interactive Graphics System,

IEEE Transactions on Software Engineering, 7 (2), 229-240.
Yerkes, R.M. & Dodson, J.D. (1908). The Relative Strength of Stimulus to Rapidity of Habit-

Formation, Journal of Comparative and Neurological Psychology, 18, 459-482.

