
Chapter 7: 

THE 
PRACTICALITIES OF 
NONSPEECH AUDIO 

Introduction 

To be written. 

The Composition of the Team 

eg., EuroPARC Resources 

• Gaver - psychologist 

• Buxton/Bristow - music 

• physicist 
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• BBC - sound effects, etc 

• Patterson - Human Factors / Psych 

Planned this way, but didn't work out that way.  In reality, were inspiration and sounding board, not 
collaborators.  If all in a "team", management/logistic  problems.  i.e., mobility.  Main sound work by 
individual (Gaver) with applications person.  Real issue of overhead to get work done efficiently (the good 
people that you want to work with are typically busy.) 

 

Everyone says you need a team, must have a musician, etc.  But ... having a musician doesn't guarentee 
anything.  A sound effects specialist might be far more useful.  What is clear is that to avoid annoyance, 
etc., must be controled.  Early systems willl, if the introduction of laserprinters is an example, be subject to 
the audio equivalent to fontitis. 

 

In abscence of full ranginfg design team (and the above is just for the audio component - how 
unmanageable would be the whole project meetings?), a methodology with adequate user testing and 
evaluation, and just plain living with system can provide safeguards to overcome the 
imperfections/compromises in the team composition. 

 

Trade-off between nobody can have all the skills, and be really good at all, which suggests a team, nbut 
you want the agility and mobility of small group, for budgetary for realisty. 

 

Generating and Controlling Sounds 

In order to do research in the area of nonspeech audio, one needs to be able to exercise control over a rich 
and potent sound repertoire.  In the past few years, there has been a lot of progress in the development of 
technologies to support such control.  From a practical point of view, the researcher's life is a lot easier 
than it was when Bly first started her experiments.  

 

In this chapter, we discuss some of the "nuts-and-bolts" practicalities of working with nonspeech audio.  
We look at some important  hardware and software issues that affect our ability to synthesize and process 
sounds. 

 

While some of the information in this chapter will date quickly, the underlying issues will remain with us 
for some time.  The objective is to help new researchers get started.   

 

We want to create systems that will impose minimal constraints on possible research.  To achieve this, we 
make a few assumptions: 

 

• Response time:  About 5 ms is the upper bound on response for audio cues. 

• Multi-Sound / Multi-Timbre:  Not only must we be able to control more than one sound at a time 
(polyphony), we must have independent timbral control over each (polytimbre). 
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• Realtime continuous control:  Triggering sound events is not sufficient.  We need realtime 
continuous control over various types of modulation, including loudness, pitch, timbre, etc. 

• Processing as well as synthesis:  Signal processing techniques such as filtering and reverberation are 
important, especially in placing sounds along the foreground/background continuum.  Provision of 
these facilities is as important as sound synthesis. 

• Burden on host:  Maintaining adequate response time is hard enough without the additional burden 
of sound.   Having the addition of sound degrade the performance of other functions is 
unacceptable. 

 

Just as visual displays must echo characters as they are typed, so must auditory displays be synchronized 
with the processes with which they are associated. 

 

But audio interfaces must do more than simply echo an event with a sound.  In thinking about response, 
the continuous shaping of a window in a direct manipulation system is perhaps a better analogy than the 
echoing of a typed character.  In most cases, it is not sufficient simply to trigger a sound at a particular 
moment.  To provide a proper foundation for research, the sound control system must also support 
dynamic "shaping" of the sound's attributes.  As the visual display of a window stretches when we drag its 
corner, so must a sound vary continuously as the parameter to which it is associated is manipulated. 

 

We need control over sound which is rich, immediate, and continuous.  However, even with the 
technology available today, this is not always easy.  Much of the difficulty lies within our programming 
environments, which make it difficult to instrument processes.  But even with the appropriate software 
tools, it can be very difficult to provide the desired control without adversely affecting other aspects of the 
system's performance. 

 

One way to "save cycles" on the host machine is to delegate the audio processing and synthesis to 
peripheral hardware.  This way, the computational bandwidth demanded from the host is reduced from 
audio levels down to control levels - a reduction of as much as two orders of magnitude. 

 

While we briefly discuss some aspects of host-generated sounds, our working assumption is that the host 
is already busy, and that most audio work will employ external hardware.  We briefly cover "hard" and 
"soft" synthesis, and synthesis versus playback (sampling).  We pay particular attention to the control 
protocol standard in the music business, MIDI, and mention specific products as examples.  However, 
please keep in mind the following points: 

 

• We only discuss products with which we are familiar. 

• We are not familiar with everything. 

• New products come out every day. 

 

This is just another way of saying that our examples are just that, examples.  Use them when evaluating 
other products, then make your own choice. 
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Parameterized Icons 
Auditory icons not only reflect categories of events and objects as visual icons do, but are parameterized to 
reflect their relevant dimensions as well.  That is, if a file is large, it sounds large.  If it is dragged over a new 
surface, we hear that new surface.  And if an ongoing process starts running more quickly, it sounds quicker. 

The possibility of parameterizing icons, whether auditory or visual, has largely been neglected in interface 
design [though see 2].  But parameterized icons can serve as more than mere labels for their referents, providing 
rich sources of information about relevant dimensions such as size, age, or speed as well.  Parameterization 
allows single objects or events to be assessed along a number of dimensions.  In addition, it creates families of 
icons that retain perceptual similarity while allowing comparison among members.  In general, parameterized 
icons allow a great deal of information to be conveyed perceptually rather than symbolically. 

 

Creating Parameterized Auditory Icons 
Unfortunately, it is difficult to parameterize auditory icons because it is difficult to control a virtual source of a 
sound along relevant dimensions.  Standard synthesis techniques have been developed for creating music, and 
thus afford changes of a sound's pitch, loudness, duration and so forth.  But they do not make it easy to change a 
sound from indicating a large wooden object, for instance, to one specifying a small metal one.  It is easy to 
create a wide variety of beeps and hums using standard synthesis techniques, but difficult to create and 
manipulate sounds along dimensions that specify events in the world. 

Because of the limitations of standard synthesis techniques, interfaces using auditory icons have relied on digital 
sampling in their implementations.  Desired sounds are captured by recording them on a computer, shaped by a 
designer, then played back and manipulated under the control of the interface.  This enables the use of much 
more complex and realistic sounds than can be created by readily available synthesis algorithms.  However, 
there are several drawbacks of sampling that limit its utility as a technique for creating and using auditory icons:  

• It is difficult to capture an actual event that sounds like what is desired, because 
sounds are invariably coloured by the technologies used to record them. 

• Shaping recorded sounds along dimensions relevant for auditory icons is difficult 
because available software is designed for making music. 

• Real-time modification of sounds on playback is even more limited. 

• The amount of memory needed for complex auditory interfaces is often prohibitive 
(on the order of 10K bytes per second of sound). 

These limitations constrain the possibilities for designing auditory icons, and make their creation difficult and 
time-consuming. 

 

In this paper, I suggest an alternative in the form of a new type of synthesis algorithm developed as a result of 
basic research on auditory event perception, and describe several examples in sufficient detail to allow readers 
to implement and explore them.  These algorithms allow sounds to be specified in terms of their sources rather 
than their acoustic attributes.  They promise to overcome both the limitations of traditional synthesis algorithms 
and of sampling by allowing parameterized auditory icons to be specified along dimensions of virtual source 
events.   
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Acoustic Information For Events 

Creating algorithms that allow synthesis of virtual events implies an understanding 
of the acoustic information for event attributes – how sounds indicate the material or 
size of an object, for instance.  Event  attributes often have very complex effects on
sounds, effects that must be described as functions of frequencies and amplitudes 
over time that specify the partials, or frequency components, that make up a sound.  
If these functions are understood, source attributes can be specified directly, instead 
of by using separate controls over partial frequencies, amplitudes, and durations.  But how can we determine 
what these functions are? 

 

simplify

evaluate

analysis synthesis

 
Figure 1:  Traditional analysis 
and synthesis. 

 

Analysis and Synthesis of Events 
One approach to this problem is suggested by the analysis and synthesis methods [9] used by computer 
musicians to capture the relevant properties of traditional instrument sounds (Figure 1).  This approach involves 
recording sounds that vary along dimensions of interest and analyzing their acoustic structure using Fourier 
analysis or similar techniques.  Hypotheses about acoustic information suggested by the analysis can be tested 
by synthesizing sounds based on simplified versions of the data.  For instance, if one supposes that the temporal 
features of a sound indicates the event that caused it, but that its frequency makeup is irrelevant, one might use 
the amplitude contour from the original sound to modify a noise burst.  The hypothesis can then be assessed 
simply by listening to the result.   

 

In practice, however, it is often difficult to identify the acoustic information for events in the mass of data 
produced by acoustic analyses.  Thus it is useful to supplement them with analyses of the mechanical physics of 
the event itself (see Figure 2).  Studying the physics of sound-producing events is useful both in suggesting 
perceptible source attributes and in indicating the acoustic information for these attributes.  Acoustic analyses 
help both in checking the adequacy of physical models and in evaluating particular parameters.  Finally, the 
resulting models can provide the basis for synthesis algorithms that allow sounds to be specified in terms of 
sources attributes.    
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Figure 2.  Analyzing and synthesizing events requires physical as well as acoustic analyses. 

 

In the following sections, I discuss several case studies of events that have been studied in this manner and 
describe the synthesis algorithms that have resulted.  The algorithms have been chosen for their utility in 
creating auditory icons, and are described in order of their complexity.  I start with the sounds made by 
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mechanical impacts, which involve a simple interaction of objects.  Next I describe how more complex 
bouncing, breaking, and spilling sounds can be produced by specifying the temporal patterning of a series of 
impacts.  A third algorithm allows the same virtual object to be hit and then scraped by distinguishing objects 
from the interactions that cause them to make sound.  Finally, I describe an algorithm for producing machine-
like sounds, showing that high-level attributes of complex events may be synthesized directly. 

 

Impact Sounds 
Many of the sounds we hear in the everyday world involve one solid impacting against another.  Tapping on an 
object, placing it against another, letting it fall – all involve impact sounds.  In the interface, impact sounds are 
useful in the design of a variety of auditory icons that indicate events such as selecting a file, moving it over 
another, or attaching one object to another.  

 

Several studies have explored the perceptible attributes of impact events and the acoustic information about 
them.  In this section, I briefly review these studies, then show how the information they provide can be used to 
create a synthesis algorithm that allows impact sounds to be specified along dimensions of the virtual source.  

 

Mallet Hardness, Material, and Size 
Freed and Martins [3] studied people’s perception of the hardness of mallets used to strike objects.  They 
recorded the sounds made by hitting cooking pans with mallets of various hardnesses, asked people to judge 
hardness from the sounds, and used a model of the peripheral auditory system to analyze the acoustic correlates 
of their judgements.  They found that the ratio of high to low frequency energy in the sounds and its change over 
time served as the most powerful predictors of subjects' hardness judgements.  To a good approximation, then, 
mallet hardness is conveyed by the relative presence of high and low frequency energy. 

 

I studied the acoustic information available for the length and material of struck wood and metal bars and 
people's abilities to perceive these attributes [4].  I recorded and analyzed the sounds made by wood and metal 
bars of several different lengths, and developed a model of the physics of impacts that combined analytical 
solutions to the wave equation for transverse vibrations in a bar [e.g., 8] with empirical measurements of 
damping and resonance amplitudes.  This model was used both to aid interpretation of the acoustic analyses and 
to synthesize new tokens. 

 

The material of the bars made several effects on the sounds they made.  Perhaps most important, materials have 
characteristic frequency-dependent damping functions:  the sounds made by vibrating wood decay quickly, with 
low-frequency partials lasting longer than high ones, while the sounds made by vibrating metal decay slowly, 
with high-frequency partials lasting longer than low ones.  In addition, metal sounds have partials with well-
defined frequency peaks, while wooden sound partials are smeared over frequency space.  These results accord 
with Wildes and Richards' [12] physical analyses of the audible effects of the internal friction characterizing 
different materials, which show that internal friction determines both the damping and definition of frequency 
peaks. 

 

Changing the length of a bar, on the other hand, simply changes the frequencies of the sound it produces when 
struck, so that short bars make high-pitched sounds and long bars make low ones.  However, the effects of 
length may interact with the effects of material.  For instance, frequencies change monotonically with length, but 
the frequency of the partial with the highest amplitude depends on material and thus may change nonlinearly 
with length [4].  These nonlinearities – and the perceptual confusion they cause – may be avoided by 
simplifying the model so that partial amplitudes do not depend on material. 
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A Synthesis Algorithm for Impact Sounds 
These results may be captured in a synthesis model that uses frequency and amplitude functions to constrain a 
formula for describing logarithmically decaying sounds.  This formula describes a complex wave created by 
adding together a number of sine waves with independent initial amplitudes and logarithmic decay rates: 

G(t)  =  Sn Fn  e-dnt  coswnt (1) 

where G(t) describes the waveform over time, Fn is the initial amplitude, dn the damping constant, and wn the 
frequency of partial n.   

 

This formula has two properties that make it a useful foundation for synthesizing auditory icons.  First, its 
components map well to event attributes.  Second, it can be made computationally efficient using trigonometric 
identities. 

 

Mapping Synthesis Parameters to Source Attributes 
By constraining the values used in this formula, useful parameters can be defined which correspond well to the 
attributes of impact sounds discussed above.  The formula involves three basic components:  the initial 
amplitudes of the partials Fn, their damping e-dnt, and their frequencies coswnt.  These can be set separately for 
each partial.  However, these three components also correspond to information for mallet hardness and impact 
force, material, and size and shape respectively (see Table 1).   Thus it is more useful to define patterns of 
behaviour over the partials for each component.   

 

Table 1:  Mapping Parameters to Events 

Term Effect Event Attribute 

Fn initial amplitudes mallet hardness; 

force or proximity 

e-dnt damping material 

coswnt partial frequencies size; 

configuration 
 

For example, the partial frequencies wn can be constrained to patterns typical of various object configurations.  
The sounds made by struck or plucked strings, for example, are harmonic, so that wn = nw1.  The sounds made 
by solid plates, in contrast, are inharmonic and can be approximated by random frequency shifts made to a 
harmonic pattern.  The sounds made by solid bars can be approximated by the formula wn = (2n + 1)2/9.  
Finally, the sounds made by rectangular resonators are given by the formula wn = c/2 √(p2/l2 + q2/w2 + r2/h2), 
where c is the velocity of sound, l, w, and h are the length, width and height of the box respectively, and p, q, 
and r are indexed from 0 [12].  An algorithm based on Formula 1, then, can be constrained so that one of these 
patterns is used to control the partial frequencies wn.  In addition, w1 can be specified such that w1 µ 1/size to 
reflect the size of the object (this affects all the other partial frequencies). 

 

The initial amplitude of the partials, Fn, can be controlled by a single parameter corresponding to mallet 
hardness.  Recalling that Freed and Martin's [3] results identified the ratio of high to low-frequency energy as a 
predictor of perceived mallet hardness, we might maintain a linear relationship among the partial's initial 
amplitudes, and use the slope from F1 to control perceived hardness.  Thus Fn = F1 + h(wn - w1), where h is the 
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slope – note that h may be negative, so that higher partials have less amplitude than low ones.  F1 (and thus all 
the amplitudes) may also be changed to indicate impact force or proximity. 

 

Finally, the damping constants for each partial (dn) can be controlled by a parameter corresponding to material.  
A useful heuristic is to set dn = wnd0, so that high harmonics die out relatively quickly for highly damped 
materials and last longer for less damped materials (e.g., metal, which has low damping, tends to ring; wood, 
which is highly damped, tends to thunk).  This strategy is suggested both by Wildes and Richards [12], and by 
my own research [4]. 

 

In sum, Formula 1 can be controlled by parameters that make effects corresponding to attributes of impact 
events.  Controlling overall frequency corresponds to the object's size, while the pattern of partial frequencies 
corresponds to its configuration.  The overall initial amplitude corresponds to the force or proximity of the 
impact, while the pattern of partial amplitudes corresponds to mallet hardness.  Finally, the degree of damping 
corresponds well to the virtual object's material.  By controlling these five parameters, then, a wide range of 
sounds can be created which vary over several useful dimensions. 

 

An Efficient Algorithm for Synthesis 
Formula 1 is useful in allowing parameters to be defined in terms of source events.  It is also attractive because 
it can be implemented in a computationally efficient way. 

 

An efficient implementation of this formula relies on Euler’s relationship eiwt = coswt + isinwt to rewrite 
Formula 1 as: 

Sn = Re[(an + ibn)(p + iq)]  
 = Re[(anp - bnq) + i(bnp + anq)] (2) 

where Sn is the nth sample, a0 is the initial amplitude,  
b0 = 0, i  = √-1, p = e-dtcoswt and q = e-dtsinwt.  (A full derivation is available upon request.) 

 

Samples can thus be generated by calculating p and q, setting a and b to the initial amplitude and 0, and applying 
equation 2.  The output sample is the real part of the result, and a and b are updated to the real and imaginary 
parts respectively (see pseudocode in Figure 3).  Computationally expensive sine and cosines need only be 
calculated once, and only four multiplications, one addition and one subtraction are needed for each partial for a 
given sample.  The efficiency of this implementation allows fairly complex impact sounds to be generated in 
realtime on many computers. 
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p = cos(freq * 1/samplerate) * power(e, -1 * damping.rate  * 1/samplerate); 
q = sin(freq * 1/samplerate) * power(e, -1 * damping.rate  
 * 1/samplerate); 

a = initial.amplitude; 

b = 0; 

 

repeat for duration.in.secs / samplerate: 

 anew = a * p - b * q; 

 bnew = b * p + a * q; 

 a = anew; 

 b = bnew; 

 output = anew; 

end repeat; 

Figure 3.  Pseudocode for efficient generation of a logarithmically-decaying cosine wave (equation 5). 

 

Breaking, Bouncing, and Spilling 
The impact algorithm can serve as a fundamental element in algorithms used to synthesize more complex 
sounds.  For instance, an early example of analysis and synthesis of sound-producing events is Warren and 
Verbrugge’s [11] study of breaking and bouncing sounds.  In this study, they used acoustic analyses and a 
qualitative physical analysis to examine the auditory patterns that characterize these events, and verified their 
results by testing subjects on synthetic sounds. 

 

Consider the mechanics of a bottle bouncing on a surface (Figure 4A).  Each time the bottle hits the surface, it 
makes an impact sound that depends on its shape, size, and material (as discussed above).  Energy is dissipated 
with each bounce so that, in general, the time between bounces and the force of each impact becomes less.  Thus 
bouncing sounds should be characterized by a repetitive series of impact sounds with decreasing period and 
amplitude.   

 

When a bottle breaks, on the other hand, it separates into several pieces of various sizes and shapes (Figure 4B).  
Thus a breaking sound should be characterized by an initial impact sound followed by several different, 

overlapping bouncing sounds, each with its own frequency 
makeup and period.   

 

Acoustic analyses of bouncing and breaking sounds confirm 
this informal physical analysis.  In addition, Warren and 
Verbrugge [11] found that people were able to distinguish 
tokens of bouncing and breaking sounds that were 
constructed by using these rules to splice tapes of impact 
sounds together. 

Synthesized Breaking, Bouncing and Spilling  
To create bouncing sounds, then, we need simply imbed the 
impact algorithm in another that calls it at logarithmically 

A) B)

Figure 4.  Bouncing (A) and breaking (B) sounds are 
characterized by the temporal patterning of a series of 
impacts [After Warren and Verbrugge, 11]. 
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decaying intervals.  To create breaking sounds, the bouncing algorithm is imbedded in another algorithm that 
calls it with parameters specifying sources of different sizes at times corresponding to several logarithmically 
decaying time series.   

 

Several new event parameters become relevant for these algorithms:  The initial height of the virtual object is 
indicated by the time between the first and second bounce, its elasticity by the percentage difference of delays 
between bounces, and the severity of breaking by the number of pieces produced.  In addition, the asymmetry of 
the perceived object can be varied by adding randomness to the overall temporal pattern.  

 

It becomes clear upon listening to sounds synthesized using this algorithm that although Warren and Verbrugge 
[11] claimed that information for breaking and bouncing depends only on temporal patterning, the perceived 
event depends on the virtual materials involved as well.  For instance, if impacts specifying wooden objects are 
produced in a temporal pattern typical of breaking, we are liable to hear spilling rather than breaking.  Similarly, 
if each of several virtual objects has different material properties, we again hear several spilling objects rather 
than breaking.  

 

In sum, the impact algorithm described above can be used not only to generate the sounds made by mallets of 
different hardnesses striking virtual objects of a wide variety of shapes, sizes, and materials, but can also serve 
as the basis for more complex bouncing, breaking, and spilling sounds.  As such, it serves as a research tool that 
allows the space of such sounds to be explored.  Moreover, it provides an efficient method for generating 
families of related auditory icons.  For instance, parameterized impact, bouncing, breaking and spilling sounds 
might be used to differentiate and provide details about the results of actions involving icons, windows, 
containers, and so forth. 

 
From Impacts To Scraping 

The sounds made by impacts and patterns of impacts are generally useful for creating auditory icons, but it is 
desirable to have access to sounds made by a wider range of events.  In particular, it would be useful to generate 
the sounds made by the same object being interacted with in different ways.  Using such algorithms, auditory 
interface designers might map a particular file to a particular object, and then hit, bounce, or scrape it depending 
on the relevant computer interaction. 

 

In order to create such algorithms, it is necessary to separate the specification of a virtual object from that of the 
interaction that causes it to produce sound.  This turns out to be possible because objects tend to vibrate only at 
certain invariant resonant frequencies.  For example, the spectrogram in Figure 5 shows the sound made by  a 
piece of glass being hit and then scraped across a rough surface.  Note that despite the different temporal 
patterns of the sounds, the resonant modes of each are the same.  These modes specify the object, then, while 
interactions determine the temporal pattern and amount of energy introduced to each.   
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Figure 5.  Spectrogram of a piece of glass being hit and then scraped: The resonant frequencies remain invariant over 
different interactions. 

 

Because the effects of interactions and objects are distinct, each can be modelled separately.  The resonant 
modes of a virtual object may be modelled as a bank of filters that allow energy to pass at particular frequencies.  
Interactions, then, can be specified by the pattern of energy passed through the filter bank. 

 

Modelling Objects as Filter Banks 
A simple formula for a bank of one-pole filters is: 

yn =  ∑mFm(c1mxn + c2myn-1 - c3myn-2) (3) 

where Fm is an amplitude scalar for partial m, yn is the nth output, xn  is the nth input, and: 

c1m = (1 - c3m ) [(1 - c2m 2)/4c3m ].5    

c2m = (4c3m cos2πfm )/(c3m + 1) 

c3m = e-2πbm; 

where fm is the peak frequency and bm the peak bandwidth of partial m. 

 

The parameters used to control the impact algorithm can also be used to control this sort of filter bank.  
However, manipulating filter bandwidths to control damping actually provides more information for material 
than do simple manipulations of sine wave damping.  Bandwidth b is proportional to damping:  the narrower the 
resonance peak of the filter the longer the resonant response to excitation.  This correlation between damping 
and the smearing of partials in frequency space corresponds well to the characteristics of sounds made by 
materials such as wood or metal [4, 12].   

 

Simulating Interactions with Input Waveforms 
A virtual object can be defined by the characteristics of the filter bank described above.  The waveform passed 
through the filter bank, then,  models the interaction that causes the object to sound.  In this section, I describe 
two sorts of input waveforms that I have explored.  The first models impact forces, the second scraping.   
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When objects are struck, the input forces are characterized by short impulses such as those shown in Figure 6.  
The energy of such impulses is spread out over many frequencies: the pulse width reflects low frequency 
energy, while its angularity reflects high frequency components.  This corresponds to Freed and Martin's [3] 
characterization of mallet hardness.  Hard mallets introduce force suddenly to an object, deforming it quickly, 
and thus introduce a relatively high proportion of high frequency energy to the resonant object.  Soft mallets, in 
contrast, deform as they hit the object, introducing energy relatively slowly, and thus the corresponding 
impulses are characterized by a high proportion of low frequency energy.  Shaping the impulses used to excite a 
filter bank, then, is a physically realistic way to control perceived mallet hardness. 

 

Filter 
Bank

Impulse Result 

A)

B)

Filter 
Bank

 

Figure 6.  Sample impulse waveforms characterizing different impacts (see text). 
 

When an object is scraped, force is applied more continuously.  Scraping has been relatively unexplored in 
terms of its physical or perceptual attributes.  However, an informal physical analysis suggests that the pattern of 
force on an object generated as it is scraped across a surface can be approximated by band-limited noise, where 
the center frequency of the noise corresponds to dragging speed, and the bandwidth to the roughness of the 
texture (see Figure 7).  Although these parameters are only approximate, being less well motivated physically or 
psychologically than those used to model impacts, experience shows that a wide variety of realistic scraping 
noises can be produced using these heuristics. 

In sum, the filter-based algorithm described in this section is based on a physically plausible model of sound 
producing events.  By separating the parts of the model that specify the object from those specifying the 
interaction, a wide range of virtual sound-producing events can be simulated.  The model can create any of the 
impact sounds that the algorithm described in the last section can.  In addition, it can also be used to create a 
variety of scraping sounds (and, potentially, any other sound involving solid objects).   
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The ability to generate the sounds of the same object being caused to sound by different interactions offered by 
this algorithm has great potential for the creation of auditory interfaces.  It allows the design of parameterized 
auditory icons in which the same interface object (e.g., a file) might make sounds indicating a variety of events 
(e.g., selecting, dragging, opening). 

 
Machine Sounds 

Just as complex interactions such as scraping can be modelled by a few summarizing parameters, so might still 
more complex events be captured succinctly by high-level descriptions.  For instance, another class of sounds 
useful for auditory icons are those made by small machines.  Sampled machine sounds were used effectively in 
the ARKola simulation [7], indicating ongoing processes that were not visible on the screen.  More generally, 
they might be used to indicate background processes such as printing or compiling in more traditional 
multiprocessing systems. 

 

A detailed account of the mechanical physics of machinery seems prohibitively difficult.  But just as the 
scraping waveforms described above model the overall parameters of a complex force rather than each of the 
contributing details, so an approximate model of machines might capture some of the high-level characteristics 
of the sounds they produce.  In particular, three aspects of machine sounds seem relevant for modelling:  First, 
the overall size of the machine is likely to be reflected in the frequencies of sounds it produces; second, most 
machines involve a number of rotating parts that can be expected to produce repetitive contributions to the 
overall sound; and third, the work done by the machine can be expected to affect the complexity of the sound. 

 
FM Synthesis of Machine Sounds 
I have been exploring an efficient algorithm for creating a variety of machine-like sounds that capture these 
properties.  The basic strategy is to synthesize a sound using complex tones that vary in a repetitive way, 
indicating cyclical motion.  The rate at which the virtual machine is working, then, can be indicated by repetition 
speed, the size of the virtual machine by the base frequency, and the amount of work by the bandwidth of the 
sounds (see Figure 8). 

 

This class of sound may be synthesized efficiently using Frequency Modulation (FM) synthesis [1].  FM 
synthesis involves modulating the frequency of a carrier wave with the output of a modulating wave.  This 
produces a complex tone with a number of frequency components spaced equally around the carrier wave and 
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Figure 7.  A sample force waveform characterizing a scrape with increasing speed.   
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separated from one another by the modulating frequency. 
The number of components (and thus the bandwidth of the 
sound) depends on the amplitude of the modulating wave 
(see Figure 9).  Thus machine sounds can be created 
simply by associating the carrier frequency with the size of 
the virtual machine, setting the maximum amplitude of the 
modulator to the amount of work done by the virtual 
machine, and modulating the amplitude of the modulator 
according to the speed of the virtual machine (see 
pseudocode in Figure 10). 
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Figure 8.  Machine sounds can be characterized by a comple
wave that varies repetitively over time.   
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Figure 9.  FM synthesis, which allows simple control over complex sounds, is well suited for generating machine-like 
sounds.   

 

The resulting sounds are pitched humming noises that pulse at the speed of the virtual machine.  When "work" is 
low, the throbbing is subtle; when it is high, it becomes quite pronounced.   Moreover, the quality of the sounds 
can be varied by changing the ratio of modulating to carrier frequency:  when the two are an integral multiple of 
one another, the resulting sound is harmonic, when they are not, the sound is inharmonic or noisy.  Using this 
algorithm, then, a wide variety of machine-like sounds can be produced for use as indicators of ongoing 
processes in multiprocessing systems. 

 

 

mod.wave.amp = work * sin(speed * time/samprate); 

mod.wave.sample = mod.wave.amp * sin(mod.freq *  time/samprate); 

 

output = amp * sin((size + mod.wave.sample) *  time/samprate); 
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Figure 10:  Pseudocode for generating machine-like sounds characterized by speed, size, and work. 
 

Conclusions 
The algorithms described here allow the synthesis of a variety of everyday sounds specified in terms of 
attributes and dimensions of the events that cause them.  Because they are based on a combination of acoustic 
and physical analyses and use relatively sophisticated synthesis techniques, they capture a great degree of the 
richness and complexity of their naturally produced counterparts.  Because they are specialized for the classes of 
event they are to simulate, they are efficient, and can generate sounds in realtime on many computers.  Finally, 
because they have been designed with potential applications in mind, the events they simulate are those useful 
for auditory icons. 

 

These algorithms vary in their physical accuracy.  Some are based on quantitative physical analyses, while 
others are based on more qualitative, informal descriptions of events.  Moreover, even the quantitative analyses 
are only approximate.  For instance, the physics of a struck bar of wood is much more complex than implied by 
the simple account given here.  Insofar as these algorithms are approximate, the sounds they produce will differ 
from those made by real events. 

 

Nonetheless, these algorithms do produce quite realistic sounds.  Listeners comment that they have the 
impression of hearing an actual event rather than a synthesized sound.  Insofar as the sounds do differ from 
those made by real events, they may be considered as "cartoon-sounds," sounds which capture the relevant 
features of their sources just as visual caricatures (or graphical computer icons) capture those of theirs.  For the 
purposes of simulating sound-producing events, then, these algorithms are adequate.  For the purpose of creating 
auditory icons, they show great potential, combining flexibility, intuitive controls, efficiency, and relevance.   

 

I have specified these algorithms here in sufficient detail that readers may implement and explore them, in 
the hope that they will spur further research on parameterized auditory icons.  These algorithms open 
many possibilities for the design of rich auditory interfaces.  Impact and scraping sounds can be used to 
increase the tangibility of graphical objects in direct manipulation interfaces.  Bouncing, breaking, and 
spilling sounds can be used to indicate events in virtual reality systems.  Machine sounds might allow us 
to hear a remote printer as our job reaches the queue, and characteristics of the sound might tell us how 
fast the job is printing or how much time it will take.  In sum, using these algorithms we can design 
interfaces that we can listen to the way we do to the everyday world. 

 

The Host as Sound Generator and Processor 

 

Realtime sound synthesis and processing are difficult and computationally demanding.  Consequently, 
most computers are severely restricted in their ability to produce other than very basic sounds (beeps, 
bells, etc.), unless they have been explicitly designed with sound in mind. 

 

Despite these limitations, it is clear that even the most primitive sounds can have a valuable effect on 
improving the user interfaces for some applications. Video games often demonstrate that sound can be 
used creatively on a small computer, even when executing a computationally demanding application.  It 
can be done, but it can also be very difficult. 
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In some cases, the effort is worth it, despite the constraints.  This is true, for example, for some 
applications that run on an installed base of machines which cannot be updated.  Similarly, for the visually 
impaired,  it is likely that some sound is better than none.  

 

Some personal computers do have reasonable sound processing capabilities.  Both the Commodore Amiga 
and the Apple Macintosh have reasonably good software support for sound by way of their programmer's 
tool-kits. The Amiga has special hardware that enables it to play up to four different complex sounds 
simultaneously.  The Macintosh also has reasonable sound capabilities, as demonstrated by Gaver's 
SonicFinder.  However, it is very difficult to play more than one sound at a time.   

 

At the upper end of the scale, however, the only scientific workstation that has been designed with sound 
in mind is the Next machine.  This may, in fact, be the ultimate workbench on which to study nonspeech 
audio, but too little is known about it at this stage to form a concrete opinion. 

 

In the middle are a range of specially designed machine-specific boards that add audio capabilities to 
machines.  These are discussed below. 

 

What is clear is that no matter how good the hardware, the software must be carefully implemented for 
sound to be effectively integrated into a system.  Making a call to a sound routine is not the same as 
calling some other system service, such as a disk access.  In a Unix environment, for example, 
implementing sound routines as system calls would be far too slow to be effective.  Sound service routines 
must be light-weight processes that have the calling overhead of applications routines, not system calls. 

 

Synthesizing Everyday Sounds 

Research on what people hear and how they hear it is useful in characterizing people’s 
experience of sound in the way suggested by everyday listening.  But everyday listening 
also suggests new ways to think about creating and manipulating sounds.  In this section, we 
discuss several algorithms for the synthesis of sounds that can be controlled along 
parameters of their sources.   

In a sense, these algorithms are instantiated theories about what and how we hear.  They 
have not been subjected to empirical testing, although they could be.  Instead, the 
identification of synthesis parameters with source attributes is based exploratory listening as 
well as on the research reported above.   

Above all, however, these algorithms are designed to provide a practical means to create 
everyday sounds that can be controlled along useful dimensions.  They are meant for 
eventual application, and thus they are shaped by their use of efficient synthesis techniques 
as much as their physical plausibility.  Thus these algorithms fill a kind of middle ground 
between the relatively academic research reported in this chapter and the purely applied 
work described in the next. 

 

Buxton, Gaver & Bly 7.16 Practicalities 



Creating Impact Sounds With Constrained Additive Synthesis 

A general formula for describing impact sounds is based on the simple addition of a number 
of sine waves with independent initial amplitudes and independent logarithmic decay rates.  
The formula for these sounds is: 

G(t)  =  Σn Φn  e-δnt  cosωnt (1) 

where Φn is the initial amplitude of partial n, δn is the damping constant for partial n, and 

ωn is partial n's frequency.  This formula has two properties that make it an interesting 
foundation for synthesis.  First, its components map well to properties of objects.  Second, 
through the use of trigonometric identities, it can be made very computationally efficient. 

Mapping Synthesis Parameters to Source Attributes 
There are three basic components to this formula:  Φn, or the initial amplitudes of the 
partials; e-δnt, or their damping, and cosωnt, the partial frequencies.  In general, these can be 
set separately for each partial n.  However, it is more useful to define patterns of behavious 
over the partials.  By adding such constraints, useful parameters can be defined which 
correspond well to source attributes. 

For example, the partial frequencies ωn can be constrained to patterns typical of various 
object configurations (as can be heard in Sound Examples N - N).  The sounds made by 
struck or plucked strings, for example, are harmonic, so that ωn = nω1.  The sounds made 
by solid plates, on the other hand, are inharmonic and can be approximated by random 
frequency shifts made to a harmonic pattern.  The sounds made by solid bars can be 
approximated by the formula ωn = (2n + 1)2/9.  Finally, the sounds made by rectangular 
resonators are given by the formula ωn = c/2 √(p2/l2 + q2/w2 + r2/h2), where c is the 
velocity of sound, l, w, and h are the length, width and height of the box respectively, and p, 
q, and r are indexed from 0.  An algorithm based on Formula 1, then, can be constrained so 
that one of these patterns is used.  In addition, ω1 can be specified (affecting all the other 
partial frequencies) in order to reflect that size of the object (ω1 ∝ 1/size). 

Sound examples N - N:  Synthesized sounds which are varied according to 
the pattern of partial frequencies (shape), and overall frequencies (size). 

The initial amplitude of the partials, Φn, can also be controlled by a single parameter 
corresponding to a source attribute.  Recalling that Freed's (1990) results identified the 
spectral centroid as a predictor of perceived mallet hardness, we might maintain a linear 
relationship omong the partial's initial amplitudes, and use the slope from Φ1 to control 
perceived hardness (e.g., Sound Examples N - N).  Thus Φn = Φ1 - (ωn - ω1 )H, where H is 
the slope (note that H may be negative, so higher partials are of greater amplitudes than 
lower ones).  Of course, Φ1 (and thus all the amplitudes) may be changed to indicate impact 
force or proximity. 

Sound examples N - N:  Synthesized sounds which are varied according to 
the pattern of initial amplitudes (mallet hardness) and overall amplitude 
(force or proximity). 

Finally, the damping constants for each partial (δn) can also be controlled by a single 
parameter.  A useful heuristic is to set δn = ωnδ0, so that high harmonics die out relatively 
quickly for highly damped materials and last longer for less damped materials (e.g., metal, 
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which has low damping, tends to ring; wood, which is highly damped, tends to thunk).  This 
correspondence is suggested both by Wildes and Richards (xxx), and by Gaver (1988).  
Several of the other parameters suggested by Gaver (1988), such as the frequency band of 
peak vibrations for different materials, are not included in this account.  But although 
material may affect these other attributes of sound, they seem also to be the cause of 
interactions in the effects of material and length found by Gaver (1988).  Using damping to 
manipulate perceived material seems pragmatically advantageous in avoiding such 
interactions. 

Sound examples N - N:  Synthesized sounds which are varied according to 
the pattern of damping (material). 

In sum, Formula 1 can be controlled by five parameters which make effects that 
correspond reasonably well to attributes of source events.  Controlling overall frequency 
corresponds to the virtual object's size, while the pattern of partial frequencies correspond to 
its configuration.  The overall initial amplitude corresponds to the force or proximity of the 
impact, while the pattern of partial amplitudes correspond to mallet hardness.  Finally, the 
degree of damping corresponds well to the virtual object's material.  By controlling these 
five parameters, then, we can create a wide range of sounds which vary over several useful 
dimensions. 

An Efficient Algorithm for Synthesis 
Formula 1 is useful in allowing parameters to be defined in terms of source events.  It is also 
attractive because it can be implemented in a computationally efficient way. 
 
An efficient implementation of this formula1 relies on Euler’s relationship:  

eiαt = cosαt + isinαt (2) 
This implies that for a single logorithmically decaying cosine wave: 

e-δtcosαt = Re[(eiα-δ)t] (3a) 
Since t = nT, where T is the sampling interval, equation b can be expressed as: 

Sn = Re[(eiα-δ)T]n (3b) 

Where Sn is the value of the nth sample.  Or: 

Sn = Re[Sn-1 * λ],  where λ = e(iα-δ)T (4) 

Now,  Sn = an + ibn, where S0 = a0 is the initial amplitude, and b0 = 0, and 

λ = p + iq, where p = e-δtcosαt and q = e-δtsinαt.  Thus from 4: 

Sn = Re[(an + ibn)(p + iq)] 

   = Re[(anp - bnq) + i(bnp + anq)] (5) 

This means that samples can be generated by first calculating p and q and setting a and b to 
the initial amplitude and 0, respectively, and then iteratively applying equation e.  The 
output sample is then the real part of the result, and a and b are updated to the real and 

                                                           

1We are grateful to David Woodhouse (Cambridge University) for introducing us to this algorithm. 
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Pseudocode for the generation of a logarithmically-decaying cosine wave (equation 5): 

 

p = cos(freq * 1/samplerate) * power(e, -1 * damping.rate * 1/samplerate); 

q = sin(freq * 1/samplerate) * power(e, -1 * damping.rate * 1/samplerate); 

a = initial.amplitude; 

b = 0; 

 

repeat for duration.in.seconds / samplerate: 

 anew = a * p - b  * q; 

 bnew = b  * p + a  * q; 

 a = anew; 

 b = bnew; 

 output = anew; 

end repeat; 

 

imaginary parts of the result, respectively (see pseudocode below).  This means that 
computationally expensive sine and cosines need only be figured once for the calculation of 
p and q, and only four multipies, one add and one subtract are needed for each partial in a 
given sample.  The efficiency of this implementation allows fairly complex impact sounds 
to be generated in realtime on many computers. 
 

Synthesizing Patterns of Impacts 
This algorithm allows us to synthesize a wide range of impact sounds varying over a 
number of source dimensions.  Moreover, it can serve as a fundamental element in 
algorithms meant to synthesize more complex sounds.   

For instance, we can return to Warren and Verbrugge’s (1984) construction of bouncing 
and breaking sounds, and use the algorithm described above to synthesize them completely.  
To create bouncing sounds, we need simply imbed this algorithm in another which calls it at 
logarithmically decaying intervals.  The shape of the perceived object can be varied by 
adding randomness to the overall temporal pattern (e.g., Sound Examples N - N). To create 
breaking sounds, this algorithm is imbedded in another which calls it with parameters 
specifying sources of different sizes at times corresponding to several logarithmically 
decaying time series (e.g., Sound Examples N - N). 

 

Sound examples N - N:  Synthesized bouncing (of regular and irregular 
objects) and breaking sounds. 

Using the algorithm this way, it becomes clear that the sources we specify constrain the 
events we hear (as indicated above in the section on what we hear).  For instance, if each 
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impact in a temporal pattern typical of breaking specifies a wooden object, we are liable to 
hear a number of different wooden objects spilled on a surface rather than breaking.  
Similarly, if each of several objects have different material properties, we hear spilling 
rather than breaking (e.g., Sound Examples N - N).  

Sound examples N - N:  Synthesized breaking.  When the material is 
inappropriate (e.g., wood), we hear spilling; as we do when several different 
materials are specified. 

In sum, this algorithm allows us to synthesize impact sounds specifying a wide range of 
different materials, configurations, sizes, mallet hardnesses, and forces.  Moreover, it can 
serve as the basis for more complex sounds such as those made by bouncing, breaking, and 
spilling.  As such, it allows us to explore the space of such sounds to discover the 
constraints on perceived events placed by materials, and thus serves as a research tool.  
Perhaps most importantly, though, it is an efficient way to generate a family of sounds that 
might be applied in building auditory interfaces. 

Filter-based Synthesis of Interacting Materials 

The algorithm discussed above is specialized for impact sounds; its efficiency depends in 
part on the algorithm’s integration of logarithmic decay with the generation of the partials.  
The algorithm discussed in this section separates the specification of the interaction from 
that of the object.  It is thus less efficient than that above, but allows the synthesis of a much 
broader range of sounds. 

The strategy used here is based on the observation that the resonant nodes of a given 
object are fixed despite the interaction that causes it to sound.  Interactions serve to excite 
various of these resonant modes, and determine the temporal pattern of excitation and the 
amount of energy introduced to each mode.  This can be seen from the two spectrograms 
shown in Figure X.  The first shows a piece of wood first hit, and then scraped, the second a 
piece of glass hit and then scraped.  Note that despite the very different temporal patterns of 
the sounds, in each case the resonant modes of each sound are the same, 

 

 

 
Figure X.  Two spectrograms of materials being hit and then scraped.  The top shows the sounds 
made by a piece of wood; the second those of a piece of glass.  Note that the resonant frequencies 
of the materials (indicated by long-lasting dark regions on the spectrogram) are the same despite 
different interactions. 

Because the effects of interactions and objects are seperable, each can be synthesized 
separately.  The resonant modes of a virtual object may be modelled as a bank of one-pole 
filters (which allow energy to pass at a single frequency).  Interactions, then, can be 
specified in terms of the energy passed through the filter bank. 

Modelling Objects as Filter Banks 
A simple formula for a bank of one-pole filters is: 
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yn =  ∑mΦm(c1mxn + c2myn-1 - c3myn-2) (6) 

 

where Φm is an amplitude scalar for partial m, yn is the nth output, xn  is the nth input, and: 

c1m = (1 - c3m ) [(1 - c2m 2)/ 4c3m ].5    

c2m = (4c3m cos2πf m /S)/(c3m + 1) 

c3m = e-2πbm/S; 

with f m the peak frequency and b m the peak bandwidth of partial m. 

The same sorts of parameters can be used to control the peak frequencies and amplitudes 
of this sort of filter bank as are used to control the impact algorithm described in the last 
section.  The pattern of peak frequencies reflects the object’s configuration, while overall 
frequency indicates its size.  The pattern of amplitudes Φm can indicate mallet or surface 
hardness (though see below). 

Damping can be controlled via manipulations of the peak bandwidths of the filters.  
Bandwidth b is proportional to damping:  the narrower the resonance peak of the filter the 
longer the resonant response to excitation.  This corresponds well to the characteristics of 
resonating materials.  As Gaver’s (1988) empirical results and Wildes and Richards (19xx) 
analytic calculations show, highly damped materials such as wood have partials that are less 
well defined than those produced by less damped materials such as metal.  Thus 
manipulating damping naturally -- and serendipitously -- involves changing the bandwidths 
of the partials as well. 

Synthesizing sounds based on a filter-based model of the objects which produce them 
allows the same sort of control as the more specialized algorithm described in the last 
section.  The size, material, configuration and surface hardness of the object may be 
controlled, and thus a wide range of virtual objects can be specified.  But this method allows 
an even wider variety of sounds to be synthesized, because the simulation of the vibrating 
object can be combined with a number of virtual interactions. 

Simulating Interactions with Input Waveforms 
While the filter bank described in Equation 6 specifies the resonant modes of a virtual 
object, the waveform passed through the filters specifies the interaction which causes the 
object to vibrate.  Thus this waveform describes the temporal pattern of forces applied to the 
object. 

For instance, the pattern of force generated by an impact is characterized by a short 
impulse of noise such as one of those shown in Figure X.  Note that these impulses are not 
point impulses, but rather have varying degrees of width and sharpness.  Thus the energy 
they contain is spread out over many frequencies:  low frequency energy contributes to a 
given pulse’s width, and high frequency energy to its angularity.  This corresponds to 
Freed’s (xxx) characterization of mallet hardness.  Hard mallets introduce force suddenly to 
an object, deforming it quickly, and thus introduce relatively large amounts of high 
frequency energy to the resonant object.  Soft mallets, on the other hand, introduce energy 
relatively slowly (because they deform relatively quickly), and thus the corresponding 
impulses are characterized by a relatively high degree of low frequency energy.   
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Figure X.  Sample impulse waveforms characterizing different impacts.   

The pattern of force on an object generated as it is scraped across a surface can be 
considered to a first approximation as a series of impacts.  The density of the suface’s 
texture and the speed of scraping is indicated by the rate of impacts; the speed is also likely 
to be indicated by the degree of high-frequency energy in the changes of force.  This can be 
approximated by the sort of waveform shown in Figure X.  This waveform is generated by 
sampled noise held for varying degrees of time, in this example new samples are held for 
increasingly shorter times.  By speeding up the input of new energy in this way, the 
perceived speed of scraping is increased.  The perceived texture and scraping speed might 
also be approximated by low-pass filtering the input waveform, thus rounding the 
transitions between new cycles. 
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Figure X.  Sample noise waveforms characterizing different scrapes.   

There has been little research on the perception of scraping, and we know relatively little 
about the physical attributes that are important for or might be perceived on the basis of 
scraping sounds.  Nonetheless, by exploring the range of input waveforms used in this 
synthesis model,  a wide variety of scraping sounds can be produced (e.g., Sound Examples 
N - N). 

Sound examples N - N:  Synthesized sounds of a variety of different virtual 
objects being hit and then scraped.  Note the effects on scraping noises made 
by various changes in the input waveform. 

In sum, this algorithm is based on a physically plausible model of sound producing 
events.  By separating the parts of the model that specify the object from those specifying 
the interaction, a wide range of virtual sound-producing events can be simulated.  The 
model can create any of the impact sounds that the algorithm described in the last section 
can.  In addition, it can also be used to create a variety of scraping sounds (and, potentially, 
rolling sounds).  Perhaps most importantly, the model allows us to generate the sounds of 
the same object being caused to sound in different ways.  This allows an integration of the 
events we simulate that promises to be quite useful in applications. 

Clearly, the sort of synthesis strategies we present here are relatively primitive.  Only the 
sounds made by simple events may be simulated, far fewer than might be captured by 
sampling.  Nonetheless, there are a number of reasons, both theoretical and applied, that 
these algorithms are important.  In serving as instantiated theories about everyday listening, 
they allow us to explore the characteristics of everyday sounds that we hear.  More 
practically, these algorithms trade the burden of storage implied by using sampled sounds 
for the problem of generation.  Insofar as they can be implemented efficiently, this tradeoff 
is a beneficial one.  Perhaps most importantly both theoretically and practically, they allow 
us to explore spaces of sounds characterized by dimensions corresponding to those of 
sources.  In conclusion, while we have only begun to develop useful synthesis algorithms of 
this sort, this sort of work is clearly important both for understanding everyday listening and 
for its application. 
 

 

Soft to Hard to Soft: History Comes Full Circle 

 

In the "good old days" of the 60's and 70's, nearly all sound synthesis involving computers was done using 
software synthesis.  Programs were written that simulated the functions of signal processing modules.  
They were executed on general purpose computers.  These modules generated digital samples that were 
stored on disk or digital tape.  When all of the samples were computed, they were then fed to a digital-to-
analogue (D/A) converter at a constant rate, usually about 32kHz.   

 

The fluctuation of the magnitude of the samples was designed to correspond to the fluctuation of the 
acoustic pressure function associated with the sound desired.  Consequently, when the output of the D/A 
converter was fed into an amplifier, the desired sound was audible.  The "classic" programs of this genre 
were Music IV and Music V (Mathews, 1969). 

 

These programs worked in what is known as "deferred" time, as opposed to "real" time.  They often took 
on the order of 90 seconds to compute one second's worth of sound samples.  Through the '70's and early 
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'80's, efforts in the area focussed on two main areas:  the formulation of more computationally efficient 
algorithms, and the design of special purpose hardware that could do the sound processing in real time. 

 

The combination of these two trends resulted in a number of commercially available synthesizers that 
incorporated special hardware executing sonically rich digital algorithms.  Perhaps the best known of 
these is the Yamaha DX7, which incorporated a frequency modulation (FM) algorithm developed by John 
Chowning at Stanford University (Chowning, 1973; Chowning & Bristow, 1986).  This was followed by a 
number of inexpensive synthesis and signal processing devices, including digital delay lines and 
reverberators.  The Yamaha SPX-1000 is a good example of the latter. 

 

Software synthesis never died out, however.  The reason involves the age-old tradeoff between strength 
and generality.  While the specialized algorithms and hardware were powerful, they were also limited.  
What they did, they did well, but that was all that they did.  On the other hand, if the software techniques 
were slow, they were also completely general.  It might take a long time, and be hard to do, but any sound 
processing algorithm or technique could be implemented. 

 

This is where the Cruise Missile comes in.  Through the late '70's and early '80's, significant progress was 
made in developing specialized digital signal processing (DSP) chips.  Developed largely for missile radar 
systems, these chips could execute more-or-less general signal processing algorithms in realtime. 

 

This brings us up to the present.  We are now at a stage where we have a choice of devices for hardware 
synthesis.  We can opt for either the relatively inexpensive and easy to use specialized hardware, or the 
more expensive, harder to use, but more general programmable DSP chips. 

 

At this stage, it is likely that the former is the better for starting off, especially for those new to signal 
processing.  Polyphony, for example, is simply easier with the specialized hardware.  However, this is an 
area changing rapidly, and the line between "hard" and "soft" signal processing is becoming blurred, as 
manufacturers are incorporating DSPs and increasing amounts of programming capability into their black 
boxes. 

 

For those interested in exploring the software approach, perhaps one of the best and least expensive 
approaches is to use a board called Turbosynth1 for the Apple Macintosh. 

 

                                                           

1 By Digidesign,1360 Willow Road, Suite 101, Menlo Park, CA 94025.  tel: (415)-327-8811. 
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Figure 1:  Software for the Digidesign Turbosynth Board for the Apple Macintosh 

 

This board comes in versions for both the Macintosh SE and Mac II.  It is one of the most usable of all 
DSPs. Its software, shown in Figure 1,  is based on a variation of the original Music IV graphic notation. 

Another company making a programmable DSP for audio is the AudioFrame1.  Their unit is rather more 
"up-market" than the Turbosynth, but is representative of a new class of emerging hardware. 

Outside the domain of  music products, some labs have been putting together systems based on separate 
components.  For instance, the McGill Speech and Hearing Lab2 has put together a general purpose 
system for the analysis and synthesis of sounds, based on a general 386 microcomputer, a data acquisition 
board, a match co-processor, and some software.  

 

6.4  Synthesis vs. Record/Playback (a.k.a. Sampling) 

 

In the previous section, we dealt with one of the "big" tradeoffs in computer science, strength vs. 
generality.  In this section, we address another:  memory vs. cycles. 

Nearly all of our discussion thus far has been concerned with how to cope with the computational 
overhead required to work with digital audio.  However, we need go no further than our CD player to find 
an illustration that we can obtain professional quality digital audio without carrying a Cray computer 
around in our back pocket.  In short, there is an alternative to computationally expensive synthesis and 
processing. 

The alternative, as illustrated by the CD player, is to record the desired sounds digitally, save them in the 
system, and play them back on demand.  This is exactly the technique used by Gaver's SonicFinder. 

 

                                                           

1 By WaveFrame, 4725 Walnut St., Boulder, Colerado, USA 80301. tel: (303)-447-1572. 
2 Contact A. Bregman, Dept. of Psychology, Stewart Biological Sciences Building, 1205 Dr. Penfield Ave., 

Montreal, Quebec, Canada, H3A 1B1. tel: (514)-398-6103. 
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The assumption made in this approach is that memory is a more available resource than CPU cycles.  The 
SonicFinder notwithstanding, this assumption may break down fairly quickly.  Simply stated, despite 
decreasing memory costs, sound takes a lot of memory.  Furthermore, the computational overhead in 
playing back samples is non-trivial, since doing so makes heavy demands on accuracy of timing.  
Consequently, despite the apparent simplicity of merely playing back samples, we are still likely to come 
up against a wall before we are able to achieve the sonic richness that we desire. 

 

As with synthesis and processing, some of the problems with sampling can be addressed through the use 
of peripheral hardware.  Commercially available samplers are used extensively in the music business, and 
are available from a number of manufacturers, including Casio, Roland, and Akai.  Perhaps the most 
commonly used sampler is the S-900 by Akai.   Its successor, the S-1000, is shown in Figure 2. 

 

 

Figure  2:  The Akai S-1000 Sampler 

 

One problem with sampling, however, is getting the sounds that you want.  In principle, you can sample 
anything that you can record with a microphone.  But this is easier said than done.  Getting good 
recordings takes immense care and technique.  Fortunately, help comes from two directions: software and 
commercially available prerecorded samples. 

 

If you are using samples and a commercially available sampler, then Digidesign's Sound Designer 
software is highly recommended.  This helps you to "massage" your samples, as well as to organize them.  
It is the industry standard, available for virtually all commercial samplers, and runs on both Macintosh and 
Atari computers.  Another program from the same company, Softsynth, computes samples from the 
envelopes of the desired sound's partials, as specified by the user.  Figure 3 shows a Softsynth 
specification for a clarinet sound. 
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Figure 3:  Digidesign Softsynth Specification for a Clarinet Sound. 

 

 

Prerecorded samples are available from a number of sources.  Magazines like Keyboard and Sound 
Technology are excellent sources of information.  Sounds are available on floppy disks and on specially 
prepared CD-based libraries1.  These include instrumental sounds, as well as extensive collections of 
sound effects. 

 

But how useful are samples, and how well do they meet our original criteria for nonspeech audio sources?  
On the one hand, the SonicFinder and many video games demonstrate that they can be used to good 
effect.  However, in our opinion, their use - while valuable - has distinct limitations.  The use of samples is 
largely tantamount to playing back sound effects on demand.  Since the sounds are prerecorded, we have 
few, if any, hooks into their internal structure.  Consequently, the realtime control that we can exercise 
over them is limited to transposition in pitch, filtering, loudness, envelope and stretching in time (looping).  
Whereas synthetic sounds may be harder to generate, they lend themselves to far more subtle dynamic 
control. 

 

On the positive side, sampling provides access to sounds derived from nature.  Therefore, it is very 
valuable in exploring the use of everyday listening and sounds. 

 

                                                           

1 Sound Ideas, 105 West beaver Creek Road, Suite 4, Richmond Hill, Ontario, Canada L4B 1C6.  Tel: Canada: 
(416)-977-0512 / US: (800)-387-3030.  Fax:  (416)-886-6800. 
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Consequently, what do we do in our lab?  We use a combination of sampling and synthesis techniques, 
both using external hardware.  However, it should be kept in mind that the decisions we have made in a 
research environment are likely to be different than those we would have made if we had been developing 
a product. 

 

Sound in Space 

There are a few comercial systems available that control sound in space.  One that is intended for use with 
loudspeakers is the SP-1 Spatial Sound Processor  from Spatial Sound, Inc.1  Another recent product is the 
Roland Sound Space processing system (RSS).2 

 

There are at least two systems specifically designed for controlling sound in space using headphones 
equipped with position and orientation sensors.  One is the convolvatron (Wenzel,  Wightman & Foster, 
1988a&b).  This is a stand-alone unit.  A comparable device designed to run on a build-in signal-
processing board on the Macintosh II family is also available.3 

 

A Word About Control:  MIDI 

 

We have discussed how we can off-load computationally expensive processes to external hardware.  
However, most of our experience with computers tells us that this tends to be expensive, idiosyncratic 
"one-off" type of work, and difficult to do from both the hardware and software perspectives. 

 

Luckily, there has been a most important development.  In 1982, the music industry agreed upon a 
guideline for a means of interconnecting computers and audio equipment called the Musical Instrument 
Digital Interface, or MIDI (IMA, 1983;  Loy, 1985).  MIDI is a medium speed serial interface for 
communicating control information (such as keyboard events, button pushes, and fader motion) among 
digital devices. 

 

MIDI specifies the mechanical, electrical, and logical interface for interconnecting equipment.  It has been 
incorporated into literally millions of units.  It works, it is widely available, and it is inexpensive and 
supported. 

 

Researchers can easily acquire samplers, synthesizers, signal processors, and mixers which are MIDI 
controllable.  MIDI interfaces are available for virtually all microprocessors.  For other computers, such as 
Suns, adaptors are available to convert between MIDI and RS-232 ports.4   

 

                                                           

1 Spatial Sound, Inc., 743 Center Boulevard, Fairfax, CA 94930 (USA).  Tel: (415)-457-8114.  Fax: (415)-457-
6250. 

2 Roland Corp, US., 7200 Dominion Circle, Los Angeles, CA, USA 90040-3647.  Tel: (213)-685-5141. 
3 Gehring Research Corp., 189 Madison Ave., Toronto, Ontario, Canada M5R 2S6.  Tel/Fax: 416-963-9188. 
4 Hinton Instruments, 168 Abingdon Road, Oxford 0X1 4RA, United Kingdom. 
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MIDI is by no means perfect.  However, it is usable and useful.  One problem is that virtually all 
commercially available MIDI software is "closed;"  that is, it is almost impossible to tailor applications.  
Consequently, it is often necessary to start from scratch in building software tools to support research.  
One exception, however, is a package distributed on a cost-recovery basis by Roger Dannenberg of 
Carnegie Mellon University.1   This is a set of application-callable library routines for the Macintosh and 
IBM-PC computers.  

 

For anyone planning to work with MIDI, we highly recommend joining the International MIDI 
Association (IMA)2 which will, among other things, provide you with a copy of the MIDI specification. 

 

In the remainder of this chapter, we will discuss various MIDI modules, including synthesizers, and 
conclude with a brief overview of the MIDI protocol and its use. 

 

Synthesis Modules 

 

Generally, when one thinks of a synthesizer, one thinks of something that looks much like a high-tech 
organ.  It has a piano-like keyboard, and a bunch of knobs, dials, and buttons.  Whereas that image is still 
partially accurate, MIDI has changed things somewhat. 

 

One thing that MIDI has done is to separate the control part of musical instruments from the synthesis 
part.  Before MIDI, an instrument's  controller (typically a keyboard) had to be tightly coupled with the 
synthesis stage.  Now, the synthesis unit needs only to understand MIDI commands.  It need not have any 
idea whether they come from a keyboard, computer, or some other control device. 

 

Consequently, manufacturers now produce a wide range of synthesizer modules that have no keyboard, or 
any other controller.  Typically, these units come in standard 19 1/2" rack-mounting units.   

 

 

 

 Yamaha's TX-802.  The DX7 Mk II is essentially the same unit, but with an integrated 
keyboard. 

 
                                                           

1 For details write:  Prof. Roger B. Dannenberg, Center for Art and Technology, Carnegie Mellon University, 
Pittsburgh, PA 15213-3890, USA. 

2 IMA, 11857 Hartsook St., North Hollywood, CA, 91607 
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In looking for an appropriate synthesizer, there are a number of features to keep in mind: 

 

• multi-timbre 

• timbral range 

• ease of control 

• ease of programming 

• size 

• cost 

 

While there are a number of synthesizers on the market, few meet the combined criteria of being poly-
timbral, flexible, rich in sounds, small, and inexpensive. 

 

One can question whether any of these devices is actually easy or intuitive to use.  Voicing programs and 
librarians, discussed later under the heading of Auxiliary MIDI Software, provide some help. However, as 
with samplers, one way to circumvent the problem of "rolling your own" sounds, is to acquire them ready 
made.  It is almost always easier and more reasonable to modify someone else's sound to your needs than 
build your own from scratch. 

 

Additional sounds are available for most synthesizers.  Music stores, or magazines like Keyboard and 
Sound Technology are good sources.  The thing to keep in mind, however, is that the quantity and quality 
of sounds available depends largely on the popularity of the synthesizer in question.  In fact, this holds 
true for most forms of secondary support, such as software tools. 

 

Consequently, the number of candidate modules is more limited.  As a start, we recommend that you look 
at two families of devices, one from Yamaha, the other from Roland. 

 

The Yamaha devices are the TX-802, already mentioned, and its smaller companion, the FB01.  

 

The FB01 is interesting due to its rich sound repertoire, small size, and very low price.  Board-level 
versions of it are available that fit into the backplane of IBM-PC machines1.  Both devices use Chowning's 
FM synthesis algorithm .  The TX-802 has better fidelity and a more complex  implementation.    

 

The Roland units we recommend are the D-110 and its smaller companion, the MT-32.  Like the FB01, 
the latter is a smaller, less expensive version of its companion, whose only real shortcoming is somewhat 

                                                           

1 The IBM Music Feature Card.  EM Bookshelf, 6400 Hollis St. #12, Emeryville, CA 94608.  tel: (415)-653-3307. 
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lower sound quality.  Both Roland units use another form of algorithm, known as LA synthesis, which is 
extremely rich and useful. 

 

 

Signal Processing Modules 

 

Regardless of whether sounds are synthesized or sampled, derive from the host or a peripheral, or are 
software or hardware generated, good sounds alone are not enough. 

 

In many cases, the ambience of a sound is as important, if not more so, than the identity of the sound 
itself.  This brings us into the world of MIDI controllable audio signal processors and effects.  Perhaps the 
most important of these is the digital reverberator. 

 

The past few years have seen a dramatic reduction in the price of mid to high quality digital reverberators.  
There is a wide choice from a number of manufacturers, including Alesis, Roland, and Yamaha. 

 

Many of the newer effects modules are not limited to one function, such as reverberation.  The new 
generation of units typically incorporate an internal DSP that can perform filtering, delay, echo, tremolo, 
transposition, as well as reverberation.  In fact, some units, such as from Digitech and Roland, can 
perform more than one function simultaneously. 

 

One class of peripheral that warrants investigation is known as a "pychoacoustic enhancer."  This is a 
"mystery" black box that is claimed to give sounds more "presence."  Be that what it may, it is clear that 
some degree of timbral processing is useful, along with reverb and loudness control, in establishing figure-
ground relationships among sounds.  What we mean by this is that we want to be able move sounds along 
a continuum from background to foreground without necessarily using loudness as the primary cue.  
Enhancers may help here, but are as yet unproven.  However, dynamic filters, especially parametric 
equalizers (such as the Yamaha DEQ7) are very useful in this regard. 

 

No matter how sounds are synthesized or processed, they have to be heard and so their levels have to be 
adjusted.  The  audio mixer is the device normally used to do this. Two particular devices, the Yamaha 
DMP7  and DMP11, are especially attractive.  They are both fully MIDI controllable and they have a 
significant amount of signal processing effects built in, including delays, reverb and parametric 
equalization  Consequently, they provide an extremely convenient package to support  research. 

 

 

Auxiliary Audio Devices 
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An audio system  needs  speakers, amplifiers, cables, etc. to function.  While most of this is obvious, there 
are a few comments worth making.  Perhaps the most important is, keep it simple. 

 

While it is likely that  the sound synthesis and processing elements can be hidden from the end user, the 
final stages of the audio chain are normally far more evident.  For speakers, we strongly recommend using 
self-powered models, such as those designed to be used with personal stereos.  These are available from a 
number of manufacturers.  We particularly like the price and performance of the Warfdale Active 
Diamond self-powered speaker.  Other  speakers are available from Tandy/Radio Shack. 

 

In many environments, headphones are required.  In such cases, remember that headphones are often as 
useful for keeping external sounds out, as for keeping sounds in.  That is, besides keeping sounds from 
disturbing  neighbours, headphones can keep  neighbours' sounds from disturbing us.  Consequently, 
seriously consider headphones which fully cover the ear. 

 

 

Auxiliary MIDI Devices 

 

There are a few MIDI peripherals that one should be aware of and perhaps consider acquiring when 
equipping a lab.  The first might be a MIDI piano-like keyboard.  While a keyboard sis not likely to be a 
part of the end-user's system, it can be very useful for triggering sounds during the design and debugging 
phases. 

 

Another device which is almost a must if you have more than two or three MIDI devices is a MIDI 
Patching Matrix.  This allows the routing of MIDI data to be controlled.  To understand the need for such 
a device, one has to understand a basic shortcoming of MIDI: it is not a bus nor is it a LAN. 

 

A MIDI chain can only have one "master," or source.  Everything else is a slave, or sink.  For example, if I 
want the computer to record the state of a signal processor, then the signal processor must be the master, 
and the computer the slave.  If I then want to test the recording of the data by having the computer reset 
the signal processor, I must first change the MIDI control chain to make the computer the master and the 
signal processor the slave. 

 

Very quickly, we get in a total muddle, buried in a tangle of MIDI cables, not knowing what is connected 
to what.  The simple solution is to have the input and output of each MIDI device connected to a 
programmable switching matrix.  That way, any input can be routed to any single output, or combination 
of outputs.  Such MIDI patching matrices are available from a number of companies.  Inexpensive but 
useful units are available from J.L Cooper, Roland, Akai, 360 Systems, and Digital Music Corp.  Beware, 
however, of some products, such as from Yamaha, which (unbelievably) don't permit the MIDI patch 
matrix to be controlled by MIDI!  Check this, since you want to be able to control the entire system from 
your computer. 
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The final device that you may end up needing is what is known as a MIDI Merger.  As its name suggests, 
this merges MIDI streams from two different sources.  This is another way around the "single master" 
problem discussed above.  Several MIDI patch matrices have merge capability built in, and this is 
definitely worth looking for.  Alternatively, Pocket Products has available an extremely inexpensive 
stand-alone merger. 

 

 

 

Auxiliary MIDI Software 

 

There are two classes of software that are worth investigating if one is setting up a MIDI-based sound 
facility.  The first,  Voicing Software, provides a more civilized user interface to many of MIDI modules.  
The second,  Librarian  Software, helps keep track of all of one's sounds.  

 

One of the first things that one notices when beginning to work with MIDI devices is how incredibly 
moded and difficult the user interfaces are.  This is especially true with rack-mount equipment. 

 

Manufacturing prices can be cut by reducing the number of controls on devices.  Hence, almost every box, 
regardless of purpose or number of controllable parameters, seems to have only 2 buttons, one knob, and a 
16 character display.  Everything must be controlled with these devices, usually by stepping through a 
seemingly infinite number of modes until the  controls are "attached" to the desired parameter. 

 

Fortunately, MIDI can provide a partial solution.  Using  system exclusive messages, one can use an 
external computer to gain access to most of a modules functions.  Consequently, a side industry has grown 
up which provides computer-based software interfaces to these modules.  Voicing programs run on most 
personal computers and are available for most popular synthesizers and some signal processing units.  In 
the absence of  

commercially available software, one can build one's own.  This is especially easy on the Apple Macintosh 
using the MIDI extensions to Hypercard, available on most public bulletin boards. 

 

A User's Guide to the MIDI Commands 

 

Using MIDI commands is much simpler than it appears at first glance.  Basically, a MIDI command, just like 
any other computer command, is a series of symbols that have specific meanings and which depend on a specific 
syntax.   The only difference between sending a MIDI command and a command like "list files" is that MIDI 
commands are usually expressed in hexadecimal format.  So, for example, to tell a synthesizer that is receiving 
on channel 1 to start a note at middle C with a medium key down velocity, one sends 90 3C 40.  This may look 
a bit obscure at this point, but the purpose of this guide is to make MIDI make sense. 
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Message Syntax 

The syntax for any MIDI message is simply:  status byte, data byte(s).  The status byte is like the command 
name, and the data bytes are like arguments.  In the note on command above, "90" is the status byte, and 3C and 
40 are data bytes. 

 

There are two basic kinds of commands.  The first are called channel voice messages, the second are system 
messages.   I discuss each in turn below. 

 

Channel Voice Messages 

Channel voice messages are control messages used to play and make changes to sounds.  For instance, a note on 
message is a channel voice message, as are note off, pitch bend, and control change. 

 

Why the "channel" in "channel voice messages"?  Because these commands are sent to specific MIDI channels.  
A channel can be thought of as an address for the message.  To see why this is necessary, consider a system with 
16 synthesizers and effects units all hooked up to a computer's MIDI output.  If a note on message was received 
by all the synthesizers every time it was sent, the system would be next to useless.  But by assigning each unit to 
a different channel, and sending note on messages to specific channels, each synthesizer can indeed be 
controlled independently. 

 

The channel number that is being addressed is sent on the low four bits of the status byte of channel voice 
messages.  So the 0 in 90 means that this message is directed at channel 1 (note that though we refer to channels 
1 - 16, channels are addressed from 0 - 15.)  To send a note on message to the synthesizer on channel 5, the 
status byte would be 94 instead of 90. 

 

This example can help illustrate why MIDI messages are often expressed in hexadecimal format.  The units of 
MIDI messages are bytes, but often two kinds of information are sent in one byte.  The high four bits encode 
one message, the low four another.  Four bits can range in value between 0 and 15, and one hexadecimal digit 
also ranges from 0 (0 in hex) to 15 (F in hex).  Thus it is often clearest to use a two digit hexadecimal number to 
stand for the 8 bits; the first hex digit standing for the high four bits, and the second the low four.  For instance, 
consider how to send a note on message to the first synthesizer in our hypothetical system, and then one to the 
fifteenth.  In hex the status bytes of these messages would be 90 and 9F.  In decimal, they would be 144 and 
159.  In the hex version, the note on command 9- and the channel number -F are both obvious.  In the decimal 
form, both are obscured. 

 

Following the status byte are one or more data bytes, which act as arguments to the status byte's command.  For 
instance, in the note on command 90 3C 40, 3C and 40 are data bytes.  The first one, 3C, says which note to 
turn on (in this case, a middle C), and the second, 40, says how hard to press it.  The meaning and number of 
data bytes varies with the command being sent; see the MIDI Summary Sheet following for the syntax of the 
commands. 
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One of the more flexible (and perhaps confusing) channel voice messages is the control change message.  This 
message allows you to pass information to any one of 32 continuous controllers, 32 on/off switches, or to set the 
mode of a particular synthesizer (see below).  These messages consist of a status byte, Bn, where n is the 
channel number; then the first data byte, the control number, which specifies the controller; and finally a data 
byte which specifies the new controller value.  Officially, the assignments of controllers to control numbers is 
somewhat vague; unofficially a number of devices have been assigned to certain control numbers by common 
use.  So, for instance, the message used to turn the sustain pedal on is: Bn 40 7F (40 hex = 64 decimal; 7F hex = 
127 decimal).  

 

One of the control changes that can be sent is a channel mode message.  This message controls how the 
receiving device will respond to following MIDI messages.  There are four MIDI modes:  

 

• Mode 1: Omni on/Poly.  Omni on means that the device will respond to messages sent on any channel.  
This is useful in some situations, particularly those in which one synthesizer is driving another.  But it is 
probably not a useful mode for using a computer to exert independent control on a number of different devices.  
Poly means that the synthesizer will perform polyphonically using all its voices. 

 

• Mode 2: Omni on/Mono.  Same as above, but only one voice will be used.  This is probably not the 
mode to use if you have a polyphonic synthesizer. 

 

• Mode 3:  Omni off/Poly. Omni off means that the device will only respond to messages sent on the 
appropriate channel(s); Poly means all its voices can be used, but which voice will play when is a controlled by 
the synthesizer's internal assignment algorithm, not you.   

 

• Mode 4:  Omni off/Mono.  This is probably the most useful mode, in which each voice on each device 
can be controlled by a separate channel (up to the 16 possible).  Mono in this context doesn't mean that you only 
can use one voice per synthesizer, but one voice per channel.  Thus in this mode you can assign a different 
channel to each voice, or each device, and control each separately. 

 

System Messages 

System messages are unlike channel voice messages in that they are not sent to a specific channel and thus do 
not include the channel number in the low four bits of the status byte.  Instead, their high four bits are always 
set, so that all system messages have the status byte Fn, where n codes the particular message. 

 

System messages are divided into three categories:  System Common, System Real Time, and System  Exclusive.  
System common messages are used to select songs and positions for sequencers, and to command analog 
synthesizers to start tuning to their automatic oscillator if they have one.  System real time messages transmit 
codes that are important for sequencers. 

 

The most important system messages are system exclusives.  These allow manufacturers to define their own 
commands to which their equipment will respond.  The first data byte is the ID of the manufacturer, then a 
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variable number of other data bytes follow which depend on the command.  System exclusive messages are 
always ended with the system common message F7.   

 

For instance, let's say a company makes a MIDI controlled effects unit with reverberation.  Their  manufacturer 
number might be 1B (hex), and they  might define the data byte A2 (hex) as the command to change 
reverberation time, and the following byte as the new level.  Then to set the reverberation time to be very short, 
the user could send the message:  F0 1B A2 03 F7.   

 

There is little more to say about system exclusive messages, because they are left to the manufacturer to define.  
There is no doubt, however, that these are the most powerful features of MIDI. 

 

Summary 

MIDI is a fairly powerful control protocol for instruments, and its command language is thus somewhat 
complex.  As we hope to have demonstrated in this section, however, it is not terribly difficult to learn, 
once a few of the basic principles have been indicated.  Following this section is a MIDI summary sheet 
which briefly describes the basic MIDI commands.  With the exception of system exclusive commands, 
this sheet should be all that is needed to start using MIDI commands. 
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MIDI Code Summary Sheet 

I.  Channel Voice Messages --  "n" in status byte = channel number (0 - F) 

 

Command Status Byte  Data Bytes  Comments   

Note Off 8n 1)  Key Number   0 - FF  (3C = middle C) 

  2)  Release Velocity 0 - FF 

 

Note On 9n 1)  Key Number if velocity = 0 then same as   2)  Key Vel

 

Polyphonic Key  An 1)  Key Number usually channel pressure is used  

Pressure  2)  Key Pressure (see Dn, below) 

  

Control Change Bn 1)  Control Number see below for official and   2)  C

   

  Official Assignments: 

  0 - 31 continuous controller 0 - 31 (MSB's) 

  32 - 63              "                    "               "      (LSB's) 

  64 - 95 on/off switches (0 = off, 127 = on) 

  96 - 121 undefined 

  122 - 127 channel mode message: 

   122, 0 local control off 

   122, 127 local control on 

   123, 0  all notes off 

   124, 0 omni off 

   125, 0  omni on 

   126, no. channels     mono mode on 

   127, 0 poly mode on 

 

  Common assignments: 

  1 modulation wheel 
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  2 breath controller 

  4 foot controller 

  5 portamento time 

  6 data entry knob 

  7 main volume 

  64 sustain pedal 

  65 portamento 

  66 sostenuto 

  67 soft pedal 

  96 data entry increment 

  97 data entry decrement 

 

Program Change Cn 1)  Program number 

 

Channel Pressure Dn 1)  Channel pressure Compare with An, above 

 

Pitch Bender En 1)  Pitch Bend (LSB) 

  2)  Pitch Bend (MSB) 
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II.  System Messages 

 

Command Status Byte  Data Bytes  Comments  

 

A)  System Exclusive 

 

Enter System Exclusive F0 Manufacturer ID System exclusive commands control   data

     

B)  System Common  

 

undefined F1 – reserved for later assignment 

 

Song Position Pointer F2 1)  Song Position (LSB) 

  2)  Song Postion (MSB) 

 

Song Select F3 1)  Song Number 

 

undefined F4, F5 – 

 

Tune Request F6 none for tuning analog synths 

 

End Of Exclusive F7 none signals end of exclusive command   

 

C)  Real Time 

 

Timing Clock F8 none 

 

undefined  F9 none 

 

Start FA none  starts sequencer from beginning 
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Continue FB none starts from last stop or position   

 

Stop FC none stops sequencer 

 

undefined FD none 

 

Active Sensing FE none produced so receiver knows   

 

System Reset FF none resets system to the condition of just   
 having been switched on (caution!) 
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